NP-completeness Problems

NP: the class of languages decided by nondeterministic Turing machine in polynomial time

NP-completeness:
Cook’s theorem: SAT is NP-complete.

Certificate of TM:
Hard to find an answer if there is one, but easy to verify.

SAT — a satisfying truth assignment

HAMILTON PATH — a Hamilton path
Variants of Satisfiability

- k-SAT
- 3-SAT
- 2-SAT
- MAX 2SAT
- NAESAT

k-SAT: Each clause has at most k literals.
\[(l_1 \lor l_2 \lor \cdots \lor l_t, t \leq k)\]

Proposition 9.2 3-SAT is NP-complete.

For any clause $C = l_1 \lor l_2 \lor \cdots \lor l_t$, we introduce a new variable x and split C into
\[
C_1 = l_1 \lor l_2 \lor \cdots \lor l_{t-2} \lor x,
\]
\[
C_2 = \neg x \lor l_{t-1} \lor l_t.
\]

Each time we obtain a clause with 3 literals. Then $F \lor C$ is satisfiable iff $F \lor C_1 \lor C_2$ is satisfiable
Proposition 9.3 3-SAT remains NP-complete if each variable is restricted to appear at most three times, and each literal at most twice.

Suppose a variable x appears k times. Replace the ith x by new variable x_i for $1 \leq i \leq k$, and add

$$
(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \cdots \land (\neg x_k \lor x_1)
$$

to the expression.

$$(x_1 \Rightarrow x_2) \land (x_2 \Rightarrow x_3) \land \cdots \land (x_k \Rightarrow x_1)$$

$\therefore x_i$ equals x_j for $1 \leq i, j \leq k$.

Theorem 2-SAT is in NL.

Corollary 2-SAT is in P.
MAX 2SAT: Find a truth assignment that satisfies the most clauses where each clause contains at most two literals.

Theorem 9.2 MAX 2SAT is NP-complete.

Reduce 3-SAT to MAX 2SAT.

For any clause $x \lor y \lor z$ where x, y, z are literals, translate it into

$$x, y, z, w,$$

$$\neg x \lor \neg y, \neg y \lor \neg z, \neg z \lor \neg x,$$

$$x \lor \neg w, y \lor \neg w, z \lor \neg w.$$

Then $x \lor y \lor z$ is satisfied iff 7 clauses are satisfied.

Let F be an instance of 3-SAT with m clauses. Then F is satisfiable iff $7m$ clauses can be satisfied in $R(F)$.

NAESAT: A clause is satisfied iff not all literals are true, and not all false. (Eg, $x \lor \neg y \lor z$, not $\{x=1, y=0, z=1\}$ $\{x=0, y=1, z=0\}$)

Theorem 9.3 NAESAT is NP-complete.

The reduction from Circuit SAT to SAT is indeed a proof.

Independent set (in a graph):

$G = (V, E), I \subseteq V$. I is an independent set of G iff for all $i, j \in I$, $(i, j) \notin E$.

INDEPENDENT SET: Given a graph G and a number k, is there an independent set I of G with $|I| \geq k$?
Theorem 9.4

INDEPENDENT SET is NP-complete. Reduce 3-SAT to it. If there are m clauses, let $k = m$.

1. Each clause corresponds to one triangle.
2. Complement literals are joined by an arc.

![Figure 9.2. Reduction to INDEPENDENT SET.](image)

Corollary
4-DEGREE INDEPENDENT SET is NP-complete.

Clique: $G = (V,E)$, $C \subseteq V$. C is a clique of G iff for all $i, j \in C$, $(i,j) \in E$.

Corollary
CLIQUE is NP-complete.
Node Cover: $G = (V, E)$, $N \subseteq V$ is a node cover iff for every edge $(i, j) \in E$, either $i \in N$ or $j \in N$.

Corollary Node Cover is NP-complete.

Cut: $G = (V, E)$, $S \subseteq V$, then $(S, V - S)$ is a cut. The size of a cut is the number of edges between S and $V - S$.

Theorem 9.5 Max Cut is NP-complete. Reduce NAESAT to it.
1. $F = \{C_1, C_2, \ldots, C_m\}$ clauses, each contains three literals. The
variables are x_1, x_2, \ldots, x_n.
\[\Rightarrow G \text{ has } 2n \text{ nodes, namely, } x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n. \]

2. (a) For a clause $C_i = \alpha \lor \beta \lor \gamma$, add edges (α, β), (α, γ), (β, γ) into G. For a clause $C_i = \alpha \lor \beta \lor \gamma$, add (α, β), (α, γ) into G.

(b) For any variable x_i, let n_i be the number of occurrence of x_i and $\neg x_i$. Add n_i edges between x_i and $\neg x_i$. (3m edges are added in total.)

3. If F is NAESAT, let S be the set of literals that is true. Then $(S, V - S)$ is a cut of size
\[2m + 3m = 5m. \]

4. If G has a cut S of size $5m$ or more, without loss of generality, we assume x_i and $\neg x_i$ are in different side. There are exactly $3m$ edges introduced in 2.(b). There are at most $2m$ edges introduced in 2.(a), which equals to $2m$ if and only if all clauses are NAESAT.
Max Bisection: A special Max Cut with $|S| = |V - S|$.

Lemma 9.1 Max Bisection is NP-complete.
Indeed, the proof of Theorem 9.5 is a one. Or, simply add $|V|$ isolated nodes into G.

Bisection Width: Separate the nodes into two equal parts with minimum cut.

Remark It is a generalization of Min Cut, which is in P. (Max Flow=Min Cut).

Theorem 9.6 Bisection Width is NP-complete.
Let $G = (V, E)$ where $|V| = 2n$, then G has a bisection of size k if and only if the complement of G has a bisection of size $n^2 - k$.
Hamilton Path: Given an undirected graph G, does it have a Hamilton path?

Theorem \textsc{Hamilton Path} is NP-complete.

Reduce 3-SAT to it.

1. choice gadget

![Choice gadget diagram]

2. consistency gadget

![Consistency gadget diagrams]

3. constraint gadget

Figure 9-5. The consistency gadget.
4. Reduction from 3-SAT to \textsc{Hamilton Path}:
 (a) Start from node 1, end with node 2.
 (b) All \odot nodes are connected in a big clique.
Corollary TSP(D) is NP-complete.
Reduce HAMILTON PATH to it.
\[
d(i, j) = \begin{cases}
 1 & \text{if } (i, j) \text{ is an edge in } G; \\
 2 & \text{otherwise.}
\end{cases}
\]
We also add an extra node that connects to other nodes with distance 1.

\[k\text{-coloring of a graph:}\] Color a graph with at most \(k\) colors such that no two adjacent nodes have the same color.

Theorem 9.8 3-COLORING is NP-complete.
Reduce NAESAT to it.

1. choice gadget: upper part
2. constraint gadget: lower part

Tripartite Matching: Given $T \subseteq B \times G \times H$, $|B| = |G| = |H| = n$, try to find n triples in T s.t. no two of which have a component in common.

(B: boys, G: girls, H: homes)

Theorem 9.8 **Tripartite Matching** is NP-complete.
Reduce 3-SAT to it.

1. For each variable x_i, we construct a choice-consistency gadget.
 (a) Let k be the maximum of the occurrence of x and the occurrence of $\neg x$.
 (b) There are k boys, k girls, $2k$ homes in this gadget.

2. For each clause $(\alpha \lor \beta \lor \gamma)$, construct a triple (b, g, h) where h is either α, β, or γ, not joined by another triple in this step.

3. Suppose there are m clauses. Then there are at least $3m$ homes. The number of boys is $\frac{|H|}{2} + m \leq |H|$. Introduce l more boys & girls such that $|B| = |G| = |H|$. For each of the l boys and girls, add $|H|$ triples that connect to all homes.
Set Covering: $F = \{S_1, \ldots, S_m\}$ of subsets of a finite set U. Find a minimum sets in F whose union is U.

Set Packing: $F = \{S_1, \ldots, S_m\}$ of subsets of a finite set U. Find a maximum sets in F that are pairwise disjoint.

Exact Cover By 3-Set: $F = \{S_1, \ldots, S_m\}$ of subsets of a finite set U, and $|S_i| = 3$, $|U| = 3m$ for some m. Find m sets in F that are disjoint and have U as their union.

All of these problems are generalization of **Tripartite Matching**. Hence, they are all NP-complete.
Integer Programming: Given a system of linear inequalities with integer coefficients, does it have an integer solution?

Theorem INTEGER PROGRAMMING is NP-complete.

Reduce SET COVERING to it. Let \(F = \{S_1, \ldots, S_n\} \) be subsets of \(U \).

\[
x = (x_1, x_2, \ldots, x_n)^t, \quad x_i = \begin{cases} 1 & \text{if } S_i \text{ is in the cover;} \\ 0 & \text{otherwise.} \end{cases}
\]

\[
A = (a_{i,j}), \quad a_{i,j} = 1 \text{ iff the } i\text{th element in } U \text{ belongs to } S_j.
\]

\[
\Rightarrow \begin{cases}
Ax \geq 1; \\
\sum_{i=1}^{n} x_i \leq B, \text{ where } B \text{ is the budget;} \\
0 \leq x_i \leq 1.
\end{cases}
\]

Knapsack: \(\{1, 2, \ldots, n\} \), \(n \) items. Item \(i \) has value \(v_i > 0 \) and weight \(w_i > 0 \). Try to find a subset \(S \subseteq \{1, \ldots, n\} \) such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \geq K \) for some \(W \) and \(K \).

Theorem 9.10 KNAPSACK is NP-complete.
Reduce Exact Cover By 3-Set to it. \(\{S_1, S_2, \ldots, S_n\} \), an instance of Exact Cover By 3-Set, \(U = \{1, 2, \ldots, 3m\} \).
Let \(v_i = w_i = \sum_{j \in S_i} (n+1)^{3m-i} \) and \(W = K = \sum_{j=0}^{3m-1} (n+1)^j \).

Proposition 9.4 Any instance of Knapsack can be solved in \(O(nW) \) time, where \(n \) is the number of items and \(W \) is the weight limit.

We can solve this by dynamic programming.

\(V(w, i) \): the largest value attainable by selecting some among the \(i \) first items so that the total weight is exactly \(w \).

\[
\begin{align*}
V(w, i + 1) &= \max\{V(w, i), v_{i+1} + V(w - w_{i+1}, i)\}; \\
V(w, 0) &= 0.
\end{align*}
\]

If \(V(W, n) \geq K \), then answer “yes.”