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NP-completeness Problems

NP: the class of languages decided by nondeterministic Turing

machine in polynomial time

NP-completeness:
Cook’s theorem: SAT is NP-complete.

Certificate of TM:

Hard to find an answer if there is one, but easy to verify.
SAT — a satisfying truth assignment

HAMILTON PATH — a Hamilton path
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4 Variants of Satisfiability )
o k-SAT

o 3-SAT

o 2-SAT

MAX 2SAT
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/k:—SAT :  Each clause has at most k literals. \

Proposition 9.2 3-SAT is NP-complete.

For any clause C' =1y VIy V --- V [;, we introduce a new variable x
and split C' into
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CQ =z V lt—l V lt'

Each time we obtain a clause with 3 literals. Then F'A C'is
satisfiable iff ¥ A Cy A Cy is satisfiable
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Proposition 9.3 3-SAT remains NP-complete if each variable is
restricted to appear at most three times, and each literal at most

twice.

Suppose a variable x appears k times. Replace the ith x by new

variable z; for 1 <7 < k, and add
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to the expression.

({L‘l:>ZE2)/\(ZE2:>I‘3)A"'/\(£Ek:>l‘1)

coxpequals o for 1 <4, 5 < k.
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Theorem 2-SAT is in NL.

Corollary 2-SAT is in P.
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/I\/IAX 2SAT: Find a truth assignment that satisfies the most \

clauses where each clause contains at most two literals.

Theorem 9.2 MAX 2SAT is NP-complete.
Reduce 3-SAT to MAX 2SAT.
For any clause x V y V z where z,y, z are literals, translate it into
x’ y? Z? w?
-z V Y,y V oz, -z Vo,

zV-w,yV-ow,zVow.

Then x V y V z is satisfied iff 7 clauses are satisfied.

- /

/Let F be an instance of 3-SAT with m clauses. Then F' is satisﬁable\
iff 7m clauses can be satisfied in R(F').
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/N AESAT: A clause is satisfied iff not all literals are true, and not\

all false.

Theorem 9.3 NAESAT is NP-complete.
The reduction from CIRcUIT SAT to SAT is indeed a proof.

N
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Independent set (in a graph):
G = (V,E),I CV. Iis an independent set of G iff for all i, € I,

(i,)) ¢ E.

INDEPENDENT SET: Given a graph G and a number £k, is
there an independent set I of G with |I| > k7
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Gheorem 9.4 INDEPENDENT SET is NP-complete. Reduce
3-SAT to it. If there are m clauses, let £ = m.

1. Each clause corresponds to one triangle.

2. Complement literals are joined by an arc.

(w1 V@2V 23) A (=21 Vimmz V =23) A (=21 V 2 V a5)

Figure 9-2. Reduction to INDEPENDENT SET.

Corollary 4-DEGREE INDEPENDENT SET is NP-complete.
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Clique: G =(V,E),C CV. Cisaclique of G iff for all i,j € C,
(i,j) € E.

Corollary CLIQUE is NP-complete.
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Node Cover:

~

G = (V,E), N CV is anode cover iff for every edge

(1,7) € E, either it € N or j € N.

Corollary NODE COVER is NP-complete.

N
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/Cut: G=(V,E), SCV, then (S,V —5)is acut. The size of a \
cut is the number of edges between S and V' — S.

Ty USY

Tg T2

bl ———————— ]

Figure 9-3. Reduction to MAX CUT.

Theorem 9.5 MAX CuT is NP-complete. Reduce NAESAT to

/
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/1. F ={Cy,Cy,...,C,} clauses, each contains three literals. The \

2.(a) For a clause C; = a V V7, add edges («, ), (a,7), (8,7)

(b) For any variable x;, let n; be the number of occurrence of x;

. If Fis NAESAT, let S be the set of literals that is true. Then

. If G has a cut S of size 5m or more, without loss of generality,

variables are 1, g, ..., Ty.

= G has 2n nodes, namely, z1,...,T,, X1,..., Tp.

into G. For a clause C; = oV aV (3, add (a, 8), («, ) into G.

and —x;. Add n; edges between x; and —z;.

(S,V —95) is a cut of size

2m + 3m = 5m.

we assume z; and —z; are in different side. There are exactly 3m

edges introduced in 2.(b). There are at most 2m edges J

~

introduced in 2.(a), which equals to 2m if and only if all clauses

are NAESAT.
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Max Bisection: A special Max CuTt with |S| = |V —S]|.

Lemma 9.1 MAX BISECTION is NP-complete.

Indeed, the proof of Theorem 9.5 is a one. Or, simply add |V/|
isolated nodes into G.

N
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Bisection Width: Separate the nodes into two equal parts with

minimum cut.
Remark It is a generalization of MIN CUT, which is in P.

Theorem 9.6 BiISECTION WIDTH is NP-complete.

Let G = (V, E) where |V| = 2n, then G has a bisection of size k if
and only if the complement of G has a bisection of size n? — k.

N
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Hamilton Path: Given an undirected graph G, does it have a
Hamilton path?

Theorem HAMILTON PATH is NP-complete.

Reduce 3-SAT to it.

1. choice gadget

.—O—O

2. consistency gadget

N
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[ o —0 g
(d) N

Figure 9-5. The consistency gadget.

3. constraint gadget

N

/
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Figure 9-6. The constraint gadget.

4. Reduction from 3-SAT to HAMILTON PATH:

(a) Start from node 1, end with node 2.

N

(b) All ® nodes are connedted in a big clique.

-

-

21V g V z3)

TV aa Vag) A (-zy V oz V —a3) A (-

(

a big clique.

onnected in

e nodes are c

@ all thes

Figure 9-7. The reduction from 3SAT to HAMILTON PATH.
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Corollary TSP(D) is NP-complete.

Reduce HAMILTON PATH to it.

o 1 if (4,7) is an edge in G;
d(i,j) = ,
2 otherwise.
We also add an extra node that connects to other nodes with

distance 1.

- J
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k-coloring of a graph: Color a graph with at most k colors such

that no two adjacent nodes have the same color.

Theorem 9.8 3-COLORING is NP-complete.

07 %1 2 X,V X3 VI X2

Figure 9-8. The reduction to 3-COLORING.
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/Reduce NAESAT to it.
1. choice gadget: upper part

2. constraint gadget: lower part

N

/
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Tripartite Matching: Given T'C B x G x H,
|B| = |G| = |H| = n, try to find n triples in 7" s.t. no two of which

have a component in common.

Theorem 9.8 TRIPARTITE MATCHING is NP-complete.

~
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Figure 9-9. The choice-consistency gadget.

Reduce 3-SAT to it.

1. For each variable z;, we construct a choice-consistency gadget.

(a) Let k be the maximum of the occurrence of x and the

occurrence of —z.

- /
~

2. For each clause (aV 3V ), construct a triple (b, g, h) where h is
either «, 3, or v, not joined by another triple in this step.

/ (b) There are k boys, k girls, 2k homes in this gadget.

(X V Xy v X))

b
o/’a\—\
—% 1 X
f’(l\gﬁ 3
.///
¥
A

3. Suppose there are m clauses. Then there are at least 3m homes.
The number of boys is |—I;‘ +m < |H|. Introduce [ more boys &
girls such that |B| = |G| = |H|. For each of the [ boys and girls,
add |H| triples that connect to all homes.

- /
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/Set Covering: F ={S5i,...,S,} of subsets of a finite set U. Find\

a minimum sets in /' whose union is U.

Set Packing: F ={S),...,S,} of subsets of a finite set U. Find a

maximum sets in F' that are pairwise disjoint.

Exact Cover By 3-Set: F = {S),...,S,,} of subsets of a finite
set U, and |S;| = 3, |U| = 3m for some m. Find m sets in F' that are

disjoint and have U as their union.

All of these problems are generalization of TRIPARTITE MATCHING.
Hence, they are all NP-complete.

- /
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Integer Programming: Given a system of linear inequalities with

integer coefficients, does it have an integer solution?

Theorem INTEGER PROGRAMMING is NP-complete.

Reduce SET COVERING to it. Let F' = {S1,...,S,} be subsets of U.

. 1 if S; is in the cover;

= (11 X9y Ty =

0 otherwise.
A = (a;;), a;; = 1 iff the ith element in U belongs to S;.

Ax > 1,
= ¢ Y, z; < B,where B is the budget;

- J
4 N

Knapsack: {1,2,...,n}, nitems. Item i has value v; > 0 and
weight w; > 0. Try to find a subset S C {1,...,n} such that
Yieswi < W and ), cv; > K for some W and K.

Theorem 9.10 KNAPSACK is NP-complete.

- 0 001 01 100000
11 00106060606 G 0
- 101000010000
—- 0 1 00 0O0O0O0T1O0TO01
00111 000O0CO0O0O0
- 00001 0D0O0O0T1 10
+ 1 01100000000
111111111111

Figure 9.10. Reduction to KNAPSACK.
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/Reduce Exact COVER BY 3-SET to it. {S1,S59,...,5,}, an
instance of ExacT COVER By 3-SET, U = {1,2,...,3m}.
Let v; = w; =) ;g (n+1)"" " and W = K = Zfzo_l(n + 1),

N

~

/
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Proposition 9.4 Any instance of KNAPSACK can be solved in
O(nW) time, where n is the number of items and W is the weight
limit.

We can solve this by dynamic programming.

V(w,1): the largest value attainable by selecting some among the i

first items so that the total weight is exactly w.

V(w,i+ 1) = max{V(w,),vip1 + V(w — w;s1,7)};
V(w,0) = 0.

If V(W,n) > K, then answer “yes.”

N
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