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To reduce Problem A to Problem B, we mean if B is solved, then A

~

Reduction

is solved.
x: an instance of Problem A
R: transformation from A to B
Slide 1 R(x): an instance of B
We require R(z) € B iff z € A.

Hence B is solved implies that A is solved.
Or, B is at least as hard as A.
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For computational problems, we say language L, is reducible to Lo if

there is a log-space reduction R such that

x € Ly if and only if R(z) € Lo

for any string x as the input of decision problem for L;.
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Propositional 8.1

~

If R is a log-space reduction, then R is a polynomial-time reduction.

1.

There are at most O(nck™) possible configurations where ¢ and

k are constants..

If a computation for a Turing machine is terminated, each

configuration can appear at most once.

Hence, R uses at most polynomial steps.
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4 Reducing Hamilton Path (HP) to SAT

HP: Given a graph, whether there is a path that visits each node
exactly once.

G has an HP iff R(G) is satisfiable.

x;;: node j is the ith node in the HP.
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4 Reducing Reachability To SAT

node n in G7
ik there is a path from node ¢ to node j and this path passes
through nodes with indices at most k.

R(G) = i = (Gikk—1 A Gjk—1) V Gijjk—1, for 1 <id, 5,k <n
gij0, if (i,7) is an edge in G.

Then node 1 can reach node n in G if and only if R(G) is satisfiable.

~

Given a graph G labeled from 1 to n, is there a path from node 1 to
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4 Reducing Circuit SAT to SAT

(Example 8.3)
@ = —gVua,gV-x (g o)
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Figure 4-2. Two circuits.
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/Reducing Circuit Value to Circuit SAT )

Reduction by generalization.

- J
4 N

If R is a reduction from L; to Ly, and R’ is a reduction from Lo to

Proposition 8.2

L3, then there is a reduction from L; to Ls.

Given any x (either z &€ Ly or z € Ly), we have
S L1 iff R(IL‘) € L2 iff R,(R(ZE)) € Lg.

Thus, we have a reduction s.t. = € Ly iff R'(R(x)) € Ls.
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/However, we cannot implement the composition R’ o R as \
1. Compute R(z);
2. Compute R'(R(x)).
This is because we may need polynomial spaces in order to store

R(z) in Step 1.
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Complete Problems

C: complexity class
L: a language in C'
We say L is C-complete if any language L’ € C can be reduced to L.

Examples:
NP-complete, P-complete, PSPACE-complete, NL-complete




/Deﬁnition A class C' is closed under reductions if whenever L is \
reducible to L’ and L' € C’, then also L € C'.

Remark

1. A complete problem is the least likely among all problems in C

to belong in a weaker class C' C C.

Slide 12 2. If it does, then the whole class C coincides with the weaker class

C’, as long as C’ is closed under reduction.

-
/

P, NP, coNP, L, NL, PSPACE, and EXP are all closed under

log-space reductions.

-

Proposition 8.3

Remark:
If an NP-complete problem is in P, then P=NP.
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If two classes C and C" are both closed under reductions, and there is

Proposition 8.4

a language L which is complete for both C and C’, then C = C'.
Observe that C C €’ and C' C C, and thus C =C'.
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Cook’s Theorem
SAT is NP-complete.
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Table Method
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Figure 8.3. Computation table.
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Theorem 8.1

CIRCUIT VALUE is P-complete.

p(|z]) x p(|x|) size computation table where p is the time bound for

the algorithm.
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Corollary: MONOTONE CIRCUIT VALUE is P-complete.
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SAT is NP-complete.

To standardize the behavior of non-determinism:

Cook’s Theorem

a a

{’l f)-_g [l;{ [F.] l)r,

Figure 8-5. Reducing the degree of nondeterminism.
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Figure 8-6. The construction for Cook’s theorem.
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