
Theory of Computation

Chapter 3

Guan-Shieng Huang

Mar. 24, 2003
Feb. 19, 2006

0-0

'

&

$

%

Universal Turing Machines

• A Turing machine is a special hardware to do computation.

A modern computer can load different programs and do the

corresponding computational tasks.

Can a Turing machine act as a universal computational device?

• Universal Turing Machines

The input of a universal TM U is M ; x, where M is the

description of a TM, x is its input. We can imagine that U

interprets M and executes M with the input x. Written as

U(M ; x) = M(x).

1

'

&

$

%

Halting Problem

Given the description of a TM M and its input x, will M halt on x?

H = {M ; x| M(x) 6=ր}.

(Note: A universal TM is implicitly assumed.)

2

'

&

$

%

Proposition 3.1

H is recursively enumerable (R.E.).

1. R.E. ⇒ there is a TM D such that

D(M ; x) =







“yes” if M(x) 6=ր

ր otherwise.

2. The universal TM U can serve this task. We only need to

modify U such that

when M(x) halts, U terminates at “yes”.

3

'

&

$

%

Theorem 3.1

H is not recursive.

1. recursive ⇒ there is a TM MH such that

MH(M ; x) =







“yes” if M(x) 6=ր

“no” if M(x) =ր.

2. Proof By Contradiction.

Suppose we have such a TM MH . Construct a TM D(x) as

(a) On input x, D first simulates MH on input x; x.

(b) If MH accepts x; x, D diverges (e.g. moves its cursor to the

right of its string forever).

(c) If MH rejects x; x, D halts.

3. That is,

D(x) : if MH(x; x) = “yes” then ր else “yes”.

4

'

&

$

%

4. What is D(D)?

(a) If D(D) =ր:

Step (b) ⇒ MH(D; D) =“yes” ⇒ D(D) 6=ր.

(b) If D(D) 6=ր:

Step (c) ⇒ MH(D; D) =“no” ⇒ D(D) =ր.

5

'

&

$

%

There are countably-many TMs.

There are uncountably-many languages.

Hence, there exists a language that is not recursive.

6

'

&

$

%

Reduction

To show that Problem A is undecidable, we establish that if there

were an algorithm for Problem A, then there would be an

algorithm for Halting H, which is absurd.

Given any M ; x, we can construct a string y such that

M ; x ∈ H iff y ∈ A.

Then A is undecidable.

7

'

&

$

%

Proposition 3.2

The following languages are not recursive.

1. La = {M | M halts on all inputs}.

2. Ld = {M ; x; y| M(x) = y}.

3. Lb = {M ; x| there is a y such that M(x) = y}.

4. Lc = {M ;x| the computation M on input x uses all states of M}.

8

'

&

$

%

La = {M | M halts on all inputs}.

Reduce Halting to this problem.

Given M ; x, we construct

M ′(y) : M(x).

Hence M ′ halts on all inputs if and only if M halts on x.

9

'

&

$

%

Ld = {M ; x; y| M(x) = y}.

Given M ; x, we construct

M ′(x′) : if (M(x) halts), then Output ǫ.

Hence M ′; x′; ǫ ∈ Ld if and only if M halts on x.

10

'

&

$

%

Lb = {M ; x| there is a y such that M(x) = y}

The meaning of this problem is not clear.

• M(x) = {“yes”, “no”, “halt”, ր}.

• Does M halts on x?

• {M ; x| M(x) = c} for some constant string c.

11

'

&

$

%

Proposition 3.3

If L is recursive, then so is L.

1. Let D be the TM that decides L:

D(x) =







“yes” if x ∈ L

“no” if x 6∈ L.

2. Construct D′ such that

D′(x) =







“yes” if D(x)=“no”

“no” if D(x)=“yes”.

Then D′ decides L.

12

'

&

$

%

Proposition 3.4

L is recursive if and only if both L and L are recursively

enumerable.

1. L is recursive ⇒

DL(x) =







“yes” if x ∈ L

“no” if x 6∈ L.

2. L is recursively enumerable

M
L
(x) =







“yes” if x ∈ L or x 6∈ L

ր if x 6∈ L or x ∈ L.

13

'

&

$

%

3. L is recursively enumerable

ML(x) =







“yes” if x ∈ L

ր if x 6∈ L.

4. Given DL, we construct Ml and M
L

as follows.

ML(x) : if DL(x) =“yes” then “yes”

else ր.

M
L
(x) : if DL(x) =“no” then “yes”

else ր.

5. Given ML and M
L
, we construct DL as

DL(x) =







if (ML(x) =“yes”) then “yes”

if (M
L
(x) =“yes”) then “no”

in parallel.

14

'

&

$

%

Enumerator

E(M) = {x|(s, ⊲, ǫ)
M

∗

→ (q, y ⊔ x ⊔ ǫ) for some q, y}.

That is, E(M) is the set of all strings x such that during M ’s

operation on empty string, there is a time at which M ’s string ends

with ⊔x⊔.

15

'

&

$

%

Proposition 3.5

L is R.E. if and only if there is a machine M such that L = E(M).

1. Suppose L = E(M). We construct a TM M ′ that accepts L as

follows.

M ′(x) : if x appears in the string of M(ǫ) then “yes”

else ր.

Then M ′(x) =“yes” iff x ∈ E(M) = L.

2. Suppose L is R.E. Then we have a TM M such that

M(x) =







“yes” if x ∈ L

ր if x 6∈ L.

We need to construct a TM M ′ such that E(M ′) = L. M ′(ǫ)

works as follows.

16

'

&

$

%

(a) For i = 1, 2, 3, . . ., simulate M on the i first inputs, one after

the other, and each for i steps.

(b) If at any point M would halt with “yes” on one of these i

inputs, say x, then M ′ write ⊔x⊔ at the end of its string

before continuing.

17

'

&

$

%

Theorem 3.2: Rice’s Theorem

Suppose that C is a proper, non-empty subset of the set of all R.E.

languages. Then

“Given a TM M , is L(M) ∈ C” is undecidable.

1. A TM is a string, and a string is a TM.

2. WLOG, we assume that L ∈ C & ∅ 6∈ C. We reduce Halting

to this problem. Given M ; x, we construct

M ′(y) : if (M(x) halts) then ML(y).

Then M ; x ∈ H iff L(M ′) = L (and M ; x 6∈ H iff L(M ′) = ∅).

That is, L(M ′) ∈ C iff M ; x ∈ H.

18

'

&

$

%

Recursive Inseparability

Two disjoint languages L1 and L2 are recursively inseparable if

there is no recursive language R such that L1 ∩ R = ∅ and L2 ⊂ R.

(That is, R contains L1 and R contains L2.)

19

'

&

$

%

Theorem 3.3

Define L1 = {M | M(M) = “yes”} and L2 = {M | M(M) = “no”}.

Then L1 and L2 are recursively inseparable.

1. Suppose that recursive language R separates them. Thus,

R ∩ L1 = ∅ and L2 ⊂ R.

2. Consider the MR that decides R. “What is MR(MR)”?

(a) If MR(MR)=“yes”, then MR ∈ L1 and MR 6∈ R, and then

MR(MR)=“no”.

(b) If MR(MR)=“no”, then MR ∈ L2 and MR ∈ R, and then

MR(MR)=“yes”.

Hence, this R is absurd.

20

'

&

$

%

Corollary

Let L′

1
= {M | M(ǫ) = “yes”} and L′

2
= {M | M(ǫ) = “no”}. Then

L1 and L2 are recursively inseparable.

1. We reduce L1 and L2 to L′

1
and L′

2
. Given any M , we

construct M ′(x) simply as M(M). Hence,

M(M)=“yes” iff M ′(ǫ)=“yes”

and

M(M)=“no” iff M ′(ǫ)=“no”.

2. If L′

1
and L′

2
are recursively separable, then so do L1 and L2.

21

