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Turing Machine

K
⊲0111000a · · · 01bb ⊔ ⊔ ⊔ ⊔ · · · · · ·
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Definition of TMs

A Turing Machine is a quadruple M = (K, Σ, δ, s), where

1. K is a finite set of states; (line numbers)

2. Σ is a finite set of symbols including ⊔ and ⊲; (alphabet)

3. δ : K × Σ→ (K ∪ {h,“yes”,“no”})× Σ× {←,→,−}, a transition

function; (instructions)

4. s ∈ K, the initial state. (starting point)
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• h: halt, “yes”:accept, “no”: reject

(terminate the execution)

• →: move right, ←: move left, −: stay

(move the head)

• ⊔: blank, ⊲: the boundary symbol
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• δ(q, σ) = (p, ρ, D)

While reading σ at line q, go to line p and write out ρ on the

tape. Move the head according to the direction of D.

• δ(q, ⊲) = (p, ρ,→), to avoid crash.
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Example 2.1
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Remark

x: input of M

M(x) =



























“yes”

“no”

y if M entered h

ր if M never terminates
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Example 2.2

(n)2 → (n + 1)2 if no overflow happens.
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Example 2.3 — Palindrome
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Turing Machines as Algorithms

• L ⊆ (Σ− {⊔, ⊲})∗, a language

• A TM M decides L if for all string x,






x ∈ L⇒M(x) = “yes”

x 6∈ L⇒M(x) = “no”.

• A TM M accepts L if for all string x,






x ∈ L⇒M(x) = “yes”

x 6∈ L⇒M(x) =ր .
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• If L is decided by some TM, we say L is recursive.

• If L is accepted by some TM, we say L is recursively

enumerable.
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Proposition 2.1

If L is recursive, then it is recursively enumerable.
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Representation of mathematical objects: (data structure)

1. graphs, sets, numbers, ...

2. All acceptable encodings are polynomially related.

(a) binary, ternary

(b) adjacency matrix, adjacency list

However, unary representation of numbers is an exception.
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k-string Turing Machines

A k-string Turing machine is a quadruple (K, Σ, δ, s) where

1. K, Σ, s are exactly as in ordinary Turing machines;

2. δ : K × Σk → (K ∪ {h,“yes”,“no”})× (Σ× {←,→,−})k;

13



'

&

$

%

An Example
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1. If for a k-string Turing machine M and input x we have

(s, ⊲, x, ⊲, ǫ, . . . , ⊲, ǫ)
Mt

−→ (H, w1, u1, . . . , wk, uk)

for some H ∈ {h,“yes”,“no”}, then the time required by M on

input x is t.

2. If for any input string x of length |x|, M terminates on input x

within time f(|x|), we say f(n) is a time bound for M .

(worst case analysis)
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TIME(f(n)): the set of all languages that can be decided by TMs

in time f(n).

Theorem 2.1

Given any k-string TM M operating within time f(n), we can

construct a TM M ′ operating within time O(f(n)2) and such

that, for any input x, M(x) = M ′(x).

(by simulation)
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Linear Speedup

Theorem 2.2

Let L ∈ TIME(f(n)). Then, for any ǫ > 0, L ∈ TIME(f ′(n)),

where f ′(n) = ǫ · f(n) + n + 2.

Definition

P =
⋃

k≥1 TIME(nk).
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Space Bounds

A k-string TM with input and output is an ordinary k-string TM

s.t.

1. the first tape is read-only;

(Input cannot be modified.)

2. the last tape is write-only.

(Output cannot be wound back.)
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Proposition

For any k-string TM M operating with time bound f(n) there is a

(k + 2)-string TM M ′ with input and output, which operates

within time bound O(f(n)).
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Space Bound for TM

Suppose that, for a k-string TM M and input x,

(s, ⊲, x, . . . , ⊲, ǫ)
M

∗

−→ (H, w1, u1, . . . , wk, uk)

where H ∈ {h,“yes”,“no”} is a halting state.

1. The space required by M on input x is
∑

k

i=1
|wiui|.

2. If M is a machine with input and output, then the space required by

M on input x is
∑

k−1

i=2
|wiui|.
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1. We say that Turing machine M operates within space bound

f(n) if, for any input x, M requires space at most f(|x|).

2. A language L is in the space complexity class SPACE(f(n)) if

there is a TM with I/O that decides L and operates within

space bound f(n).

3. Define L = SPACE(lg(n)).
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Theorem 2.3

Let L be a language in SPACE(f(n)). Then, for any ǫ > 0,

L ∈ SPACE(2 + ǫ · f(n)).
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Random Access Machines

Input: (i1, i2, . . . , in)

Output: r0 (accumulator)

Memory: r0, r1, r2, . . . (infinite memory)

k: program counter

Three address modes: (for x)

1. j: direct;

2. ↑ j: indirect;

3. = j: immediate.

(arbitrary large number)
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Theorem 2.5

If a RAM program Π computes a function φ in time f(n), then

there is a 7-string TM which computes φ in time O(f(n)3).

(by simulation)
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Nondeterministic Machines

A nondeterministic TM is a quadruple N = (K,Σ, ∆, s), where

1. K, Σ, s are as in ordinary TM;

2. ∆ ⊆ (K × Σ)× [(K ∪ {h,“yes”,“no”})× Σ× {←,→,−}].
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1. N decides a language L if for any x ∈ Σ∗, x ∈ L if and only if

(s, ⊲, x)
N∗

−→ (“yes”, w, u) for some strings w and u.

2. An input is accepted if there is some sequence of

nondeterministic choice that results in “yes”.
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N decides L in time f(n) if

1. N decides L;

2. for any x ∈ Σ∗, if (s, ⊲, x)
Nk

−→ (“yes”, w, u), then k ≤ f(|x|).

Let NTIME(f(n)) be the set of languages decided by NTMs within

time f .
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Let NP =
⋃

k≥1 NTIME(nk).

We have

P ⊆ NP .
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Example 2.9

TSP (D) ∈ NP

1. Write out arbitrary permutation of 1, . . . , n.

2. Check whether the tour indicated by this permutation is less

than the distance bound.
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Theorem 2.6

Suppose that language L is decided by a NTM N in time f(n).

Then it is decided by a 3-string DTM M in time O(cf(n)), where

c > 1 is some constant depending on N .

(NTIME(f(n)) ⊆
⋃

c≥1 TIME(cf(n)).)
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Example 2.10

• Reachability ∈ NSPACE(lg n) (This is easy.)

• Reachability ∈ SPACE((lg n)2) (In Chapter 7.)
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Why employ nondeterminism?
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Exercises

2.8.1, 2.8.4, 2.8.6, 2.8.7, 2.8.8, 2.8.9, 2.8.10, 2.8.11
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