
Theory of Computation

Chapter 1

Guan-Shieng Huang

Feb. 24, 2003

Slide 1

'

&

$

%

Text Book

Computational Complexity, C. H. Papadimitriou, Addison-Wesley,

1994.

1

Slide 2

'

&

$

%

Scope

• Chapter 1: Problems and algorithms

• Chapter 2: Turing machines

• Chapter 3: Computability

• Chapter 4: Boolean logic

• Chapter 7: Relation between complexity classes

• Chapter 8: Reductions and completeness

Slide 3

'

&

$

%

• Chapter 9: NP-complete problems

• Chapter 10: coNP and function problems

• Chapter 11: Randomized computation

• Chapter 13: Approximability

2

Slide 4

'

&

$

%

Outline of Chap. 1

• Graph Reachability

• Maximum Flow

• Matching

• Traveling Salesman Problem

Slide 5

'

&

$

%

Graph Reachability

Problem 1 Given a directed graph G = (V, E), where

V = {1, 2, . . . , n}, ask whether there is a path from node 1 to node n.

1

2 3

4

5

1 → 4 → 3 → 5

1

2 3

4

5

3

Slide 6

'

&

$

%

Algorithm

1. Let S = {1}.

2. If S is empty, go to 5; otherwise, remove one node, say t, in S.

3. For each edge (t, u) ∈ E, if u is not marked, mark u and add u

to S.

4. Go to 2.

5. If node n is marked, answer “yes”; otherwise answer “no.”

Slide 7

'

&

$

%

Problem 1.4.2

1. Show by induction on i that, if v is the ith node added by the

search algorithm to the set S, then there is a path from node 1

to v.

2. Show by induction on l that if node v is reachable from node 1

via a path with l edges, then the search algorithm will add v to

set S.

4

Slide 8

'

&

$

%

Example

1

2 3

4

5

S t

{1} 1

{3, 4} 3

{5, 4} 4

{5} 5

{}

Slide 9

'

&

$

%

Complexity

1. Observe that each node can stay in S at most once.

2. Each edge is used at most once.

3. There are at most n2 edges.

4. The time complexity is at most n2.

5. Space complexity is n.

5

Slide 10

'

&

$

%

Remark

1. How to implement Step 2 in the algorithm?

stack ⇒ DFS, queue ⇒ BFS

2. How to implement Step 3? Random access memory.

3. What is the computational model?

4. Big-O.

Slide 11

'

&

$

%

Big-O

Let f and g be functions from N to N . We write f(n) = O(g(n)) if

there are positive integers c and n0 such that, for all n ≥ n0,

f(n) ≤ c · g(n).

1. f(n) = O(g(n)) means intuitively that f grows as g or slower.

2. We write f(n) = Ω(g(n)) if g(n) = O(f(n)).

3. We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

6

Slide 12

'

&

$

%

Examples

1. n = O(n2)

2. n1.5 = O(n2)

3. If p(n) is a polynomial of degree d, then p(n) = Θ(nd).

4. If c > 1 is a positive integer and p(n) any polynomial, then

p(n) = O(cn).

5. lg n = O(n), or (lg n)k = O(n).

Slide 13

'

&

$

%

Determining Big-O

1. f(n) = O(g(n)) if

lim
n→∞

f(n)

g(n)
≤ c

for some constant c.

f(n) = O(g(n)) if

lim sup
n→∞

f(n)

g(n)
≤ c

for some constant c.

2. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

7

Slide 14

'

&

$

%

Problem 1.4.10

Let f(n) and g(n) be any two of the following functions . Determine

whether (i) f(n) = O(g(n)); (ii) f(n) = Ω(g(n)); f(n) = Θ(g(n)):

(a) n2; (b) n3; (c) n2 log n; (d) 2n; (e) nn; (f) nlog n; (g) 22n

; (h) 22n+1

;

(j) n2 if n is odd, 2n otherwise.

It is easy to see that (a) ≺ (c) ≺ (b) ≺ (d) ≺ (e).

Also, (f) ≺ (e), and (g) ≺ (h).

Slide 15

'

&

$

%

Polyniomial-Time Algorithm

• polynomial time ⇒ practical, efficient

exponential time ⇒ impractical, inefficient (intractable)

• n80 algorithm v.s. 2
n

100 algorithm

• worst case v.s. average case

The exponential worst-case performance of an algorithm may

due to a statistically insignificant fraction of the input.

8

Slide 16

'

&

$

%

Maximum Flow

A network N = (V, E, s, t, c) is a graph (V, E) with two specified

nodes s (the source) and t (the sink) such that

• the source has no incoming edges and the sink has no outgoing

edges;

• for each edge (i, j), we are given a capacity c(i, j), a positive

integer.

Slide 17

'

&

$

%

A Network

s t

2

3

1

2

1

4

3

9

Slide 18

'

&

$

%

Flow

1. an assignment of a nonnegative integer value f(i, j) ≤ c(i, j) to

each edge (i, j);

2. for each node, other than s and t, the sum of the fs of the

incoming edges is equal to the sum of the outgoing edges;

()

3. the value of a flow is the sum of the flows in the edges leaving s

(or, equivalently, the sum coming to t).

Slide 19

'

&

$

%

Maximum Flow Problem

Given a network, find a flow of the largest possible value.

s t

2/1

3/3

1/1

2/2

1/1

4/3

3/1

10

Slide 20

'

&

$

%

Algorithm

s t

2/1

3/0

1/1

2/0

1/0

4/1

3/0

s t

2/1

3/1

1/1

2/0

1/1

4/1

3/1

s t

2/1

3/3

1/1

2/2

1/1

4/3

3/1

s t

1

3

1

2

1

1

1

2

Slide 21

'

&

$

%

Another Example

s

C

C

1

C

C

Require O(n3C) time in the worst case!

11

Slide 22

'

&

$

%

Improvements

The shortest-path heuristic can reduce the time to O(n5).

Slide 23

'

&

$

%

Bipartite Matching

A bipartite graph is a triple B = (U, V, E) where U = {u1, . . . , un},

V = {v1, . . . , vn}, and E ⊆ U × V .

12

Slide 24

'

&

$

%

Matching

A matching of a bipartite graph B is a set M ⊆ E s.t.

1. |M | = n;

2. for any two edges (u, v), (u′, v′) ∈ M , u 6= u′ and v 6= v′.

Slide 25

'

&

$

%

Algorithm

Reduce MATCHING to MAX FLOW.

13

Slide 26

'

&

$

%

Traveling Salesman Problem

Given n cities 1, 2, . . . , n and a nonnegative integer distance di,j

between any two cities i and j, find the shortest tour
∑n

i=1 dπ(i),π(j)

where π is a permutation on {1, . . . , n}.

Slide 27

'

&

$

%

Example














10 5 1 11

8 3 4 5

6 16 4 5

20 2 8 2















14

Slide 28

'

&

$

%

Remark

• TSP is NP-hard (its decision version is in fact NP-complete).

• There is no known polynomial-time algorithm for solving TSP.

• If a problem is NP-complete, most computer scientists believe

that there is no polynomial-time algorithm for it.

Slide 29

'

&

$

%

Summary

We have discussed

1. Graph Reachability

2. Big-O notation

3. Maximum Flow

4. Bipartite Matching

5. Traveling Salesman Problem

15

Slide 30

'

&

$

%

• MAX FLOW =⇒ REACHABILITY.

• MATCHING =⇒ MAX FLOW.

They are all polynomial-time solvable.

However, we don’t know whether there exists a polynomial-time

algorithm that can solve TSP.

Slide 31

'

&

$

%

Reduction

• Reduction is a classical technique, which transforms an unknown

problem to an existing one.

• It usually implies to transform a harder problem into an easier

one.

• However, in complexity theory, we use it in the perverse way.

• When A reduces to B, we say that B can not be easier that A.

()

16

Slide 32

'

&

$

%

Big-O

Big-O captures the asymptotic behavior for comparison of two

positive functions. However, why we ignore the constant coefficient?

Slide 33

'

&

$

%

Problem 1.4.4

(a) A directed graph is acyclic if it has no cycles. Show that any

acyclic graph has a source (a node with no incoming edges).

(b) Show that a graph with n nodes is acyclic if and only if its

nodes can be numbered 1 to n so that all edges go from lower to

higher numbers (use the property in (a) above repeatedly).

(c) Describe a polynomial-time algorithm that decides whether a

graph is acyclic.

17

Slide 34

'

&

$

%

Problem 1.4.5

(a) Show that a graph is bipartite (that is, its nodes can be

partitioned into two sets, not necessarily of equal cardinality,

with edges going only from one to the other) if and only if it has

no odd-length cycles.

(b) Describe a polynomial algorithm for testing whether a graph is

bipartite.

Slide 35

'

&

$

%

Problem 1.4.9

Show that for any polynomial p(n) and any constant c > 0 there is

an integer n0 such that, for all n ≥ n0, 2cn > p(n). Calculate this n0

when (a) p(n) = n2 and c = 1; (b) when p(n) = 100n100 and c = 1
100

.

18

