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Text Book

Computational Complexity, C. H. Papadimitriou, Addison-Wesley,

1994.
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Scope

• Chapter 1: Problems and algorithms

• Chapter 2: Turing machines

• Chapter 3: Computability

• Chapter 4: Boolean logic

• Chapter 7: Relation between complexity classes

• Chapter 8: Reductions and completeness
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• Chapter 9: NP-complete problems

• Chapter 10: coNP and function problems

• Chapter 11: Randomized computation

• Chapter 13: Approximability
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Outline of Chap. 1

• Graph Reachability

• Maximum Flow

• Matching

• Traveling Salesman Problem
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Graph Reachability

Problem 1 Given a directed graph G = (V, E), where

V = {1, 2, . . . , n}, ask whether there is a path from node 1 to node n.
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1 → 4 → 3 → 5
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Algorithm

1. Let S = {1}.

2. If S is empty, go to 5; otherwise, remove one node, say t, in S.

3. For each edge (t, u) ∈ E, if u is not marked, mark u and add u

to S.

4. Go to 2.

5. If node n is marked, answer “yes”; otherwise answer “no.”
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Problem 1.4.2

1. Show by induction on i that, if v is the ith node added by the

search algorithm to the set S, then there is a path from node 1

to v.

2. Show by induction on l that if node v is reachable from node 1

via a path with l edges, then the search algorithm will add v to

set S.
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Example

1

2 3

4

5

S t

{1} 1

{3, 4} 3

{5, 4} 4

{5} 5

{}
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Complexity

1. Observe that each node can stay in S at most once.

2. Each edge is used at most once.

3. There are at most n2 edges.

4. The time complexity is at most n2.

5. Space complexity is n.
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Remark

1. How to implement Step 2 in the algorithm?

stack ⇒ DFS, queue ⇒ BFS

2. How to implement Step 3? Random access memory.

3. What is the computational model?

4. Big-O.
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Big-O

Let f and g be functions from N to N . We write f(n) = O(g(n)) if

there are positive integers c and n0 such that, for all n ≥ n0,

f(n) ≤ c · g(n).

1. f(n) = O(g(n)) means intuitively that f grows as g or slower.

2. We write f(n) = Ω(g(n)) if g(n) = O(f(n)).

3. We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Examples

1. n = O(n2)

2. n1.5 = O(n2)

3. If p(n) is a polynomial of degree d, then p(n) = Θ(nd).

4. If c > 1 is a positive integer and p(n) any polynomial, then

p(n) = O(cn).

5. lg n = O(n), or (lg n)k = O(n).
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Determining Big-O

1. f(n) = O(g(n)) if

lim
n→∞

f(n)

g(n)
≤ c

for some constant c.

f(n) = O(g(n)) if

lim sup
n→∞

f(n)

g(n)
≤ c

for some constant c.

2. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
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Problem 1.4.10

Let f(n) and g(n) be any two of the following functions . Determine

whether (i) f(n) = O(g(n)); (ii) f(n) = Ω(g(n)); f(n) = Θ(g(n)):

(a) n2; (b) n3; (c) n2 log n; (d) 2n; (e) nn; (f) nlog n; (g) 22n

; (h) 22n+1

;

(j) n2 if n is odd, 2n otherwise.

It is easy to see that (a) ≺ (c) ≺ (b) ≺ (d) ≺ (e).

Also, (f) ≺ (e), and (g) ≺ (h).
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Polyniomial-Time Algorithm

• polynomial time ⇒ practical, efficient

exponential time ⇒ impractical, inefficient (intractable)

• n80 algorithm v.s. 2
n

100 algorithm

• worst case v.s. average case

The exponential worst-case performance of an algorithm may

due to a statistically insignificant fraction of the input.
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Maximum Flow

A network N = (V, E, s, t, c) is a graph (V, E) with two specified

nodes s (the source) and t (the sink) such that

• the source has no incoming edges and the sink has no outgoing

edges;

• for each edge (i, j), we are given a capacity c(i, j), a positive

integer.
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A Network

s t

2

3

1

2

1

4

3
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Flow

1. an assignment of a nonnegative integer value f(i, j) ≤ c(i, j) to

each edge (i, j);

2. for each node, other than s and t, the sum of the fs of the

incoming edges is equal to the sum of the outgoing edges;

( )

3. the value of a flow is the sum of the flows in the edges leaving s

(or, equivalently, the sum coming to t).
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Maximum Flow Problem

Given a network, find a flow of the largest possible value.

s t
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Algorithm

s t
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Another Example

s

C

C

1

C

C

Require O(n3C) time in the worst case!
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Improvements

The shortest-path heuristic can reduce the time to O(n5).
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Bipartite Matching

A bipartite graph is a triple B = (U, V, E) where U = {u1, . . . , un},

V = {v1, . . . , vn}, and E ⊆ U × V .
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Matching

A matching of a bipartite graph B is a set M ⊆ E s.t.

1. |M | = n;

2. for any two edges (u, v), (u′, v′) ∈ M , u 6= u′ and v 6= v′.
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Algorithm

Reduce MATCHING to MAX FLOW.
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Traveling Salesman Problem

Given n cities 1, 2, . . . , n and a nonnegative integer distance di,j

between any two cities i and j, find the shortest tour
∑n

i=1 dπ(i),π(j)

where π is a permutation on {1, . . . , n}.
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Example














10 5 1 11

8 3 4 5

6 16 4 5

20 2 8 2














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Remark

• TSP is NP-hard (its decision version is in fact NP-complete).

• There is no known polynomial-time algorithm for solving TSP.

• If a problem is NP-complete, most computer scientists believe

that there is no polynomial-time algorithm for it.
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Summary

We have discussed

1. Graph Reachability

2. Big-O notation

3. Maximum Flow

4. Bipartite Matching

5. Traveling Salesman Problem
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• MAX FLOW =⇒ REACHABILITY.

• MATCHING =⇒ MAX FLOW.

They are all polynomial-time solvable.

However, we don’t know whether there exists a polynomial-time

algorithm that can solve TSP.
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Reduction

• Reduction is a classical technique, which transforms an unknown

problem to an existing one.

• It usually implies to transform a harder problem into an easier

one.

• However, in complexity theory, we use it in the perverse way.

• When A reduces to B, we say that B can not be easier that A.

( )
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Big-O

Big-O captures the asymptotic behavior for comparison of two

positive functions. However, why we ignore the constant coefficient?
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Problem 1.4.4

(a) A directed graph is acyclic if it has no cycles. Show that any

acyclic graph has a source (a node with no incoming edges).

(b) Show that a graph with n nodes is acyclic if and only if its

nodes can be numbered 1 to n so that all edges go from lower to

higher numbers (use the property in (a) above repeatedly).

(c) Describe a polynomial-time algorithm that decides whether a

graph is acyclic.
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Problem 1.4.5

(a) Show that a graph is bipartite (that is, its nodes can be

partitioned into two sets, not necessarily of equal cardinality,

with edges going only from one to the other) if and only if it has

no odd-length cycles.

(b) Describe a polynomial algorithm for testing whether a graph is

bipartite.
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Problem 1.4.9

Show that for any polynomial p(n) and any constant c > 0 there is

an integer n0 such that, for all n ≥ n0, 2cn > p(n). Calculate this n0

when (a) p(n) = n2 and c = 1; (b) when p(n) = 100n100 and c = 1
100

.
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