Theory of Computation Chapter 13: Approximability

Guan-Shieng Huang
Jan. 3, 2007

Decision v.s. Optimization Problems

decision problems: expect a "yes" / "no" answer
optimization problems: expect an optimal solution from all
feasible solutions

When an optimization problem is proved to be NP-complete, the next step is

- to find useful heuristics
- to develop approximation algorithms
- to use randomness
- to invest on average-case analyses

Definition (optimization problem)

1. For each instance x there is a set of feasible solutions $F(x)$.
2. For each $y \in F(x)$, there is a positive integer $m(x, y)$, which measures the the cost (or benefit) of y.
3. $O P T(x)=m^{*}(x)=\min _{y \in F(x)} m(x, y)$ (minimization problem) $O P T(x)=m^{*}(x)=\max _{y \in F(x)} m(x, y)($ maximization problem)

Definition (NPO)

NPO is the class of all optimization problems whose decision counterparts are in NP.

1. $y \in F(x) \Rightarrow|y| \leq|x|^{k}$ for some k;
2. whether $y \in F(x)$ can be determined in polynomial time;
3. $m(x, y)$ can be evaluated in poly. time.

Definition (Relative approximation)

x : an instance of an optimization problem P
y : any feasible solution of x

$$
E(x, y)=\frac{\left|m^{*}(x)-m(x, y)\right|}{\max \left\{m^{*}(x), m(x, y)\right\}}
$$

Remarks

1. $0 \leq E(x, y) \leq 1$;
2. $E(x, y)=0$ when the solution is optimal;
3. $E(x, y) \rightarrow 1$ when the solution is very poor.

Definition (Performance ratio)

x : an instance of an optimization problem P
y : any feasible solution of x

$$
R(x, y)=\max \left(\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right)
$$

Remarks

1. $R(x, y) \geq 1$;
2. $R(x, y)=1$ means that y is optimal;
3. $E(x, y)=1-\frac{1}{R(x, y)}$.

Definition (r-approximation)

$A(x)$: approximate solution of x for algorithm A
We say A is an r-approximation if

$$
\forall_{x} R(x, A(x)) \leq r .
$$

Remark

An r-approximation is also an r^{\prime}-approximation if $r \leq r^{\prime}$.
That is, the approximation becomes more difficult as r becomes smaller.

Definition (APX)

APX is the class of all NPO problems that have r-approximation algorithm for some constant r.

Definition (Polynomial-time approximation scheme)

P : NPO problem
We say A is a PTAS for P if

1. A has two parameters r and x where x 's are instances of P;
2. when r is fixed to a constant with $r>1, A(r, x)$ returns an r-approximate solution of x in polynomial time in $|x|$.

Remark

The time complexity of A could be

$$
O\left(n^{\max \left\{\frac{1}{r-1}, 2\right\}}\right), O\left(n^{5}(r-1)^{-100}\right), O\left(n^{5} 2^{\frac{1}{r-1}}\right)
$$

where $n=|x|$. All of these are polynomial in n.

Definition (PTAS)

PTAS is the class of all NPO problems that admit a polynomial tome approximation scheme.

Definition (Fully polynomial-time approximation scheme)

1. A has two parameters r and x where x 's are instances of P;
2. $A(r, x)$ returns an r-approximate solution of x in polynomial time both in $|x|$ and $\frac{1}{r-1}$
(since the approximation becomes more difficult when $r \rightarrow 1$).

Node Cover

Problem

Given a graph $G=(V, E)$, seek a smallest set of nodes $C \subseteq V$ such that for each edge E at least one of its endpoints is in C.

Greedy heuristic:

1. Let $C=\emptyset$.
2. While there are still edges left in G, choose the node in G with the largest degree, add it to C, and delete it from G.

However, the performance ratio is $\lg n$.

2-approximation algorithm

1. Let $C=\emptyset$.
2. While there are still edges left in G do
(a) choose any edge (u, v);
(b) add both u and v to C;
(c) delete both u and v from G.

Theorem

This algorithm is a 2 -approximation algorithm.
Proof. $\quad C$ contains $\frac{1}{2}|C|$ edges that share no common nodes. The optimum must contain at least one end points of these edges.

$$
\therefore O P T(G) \geq \frac{1}{2}|C| \Rightarrow \frac{|C|}{O P T(G)} \leq 2 .
$$

Maximum Satisfiability

Problem (MAXSAT)

Given a set of clauses, find a truth assignment that satisfies the most of the clauses.

The following is a probabilistic argument that leads us to choose a good assignment.

1. If Φ has m clauses $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, the expected number of satisfied clauses is

$$
S(\Phi)=\sum_{i=1}^{m} \operatorname{Pr}\left[T \models C_{i}\right] \text { where } T \text { is a random assignment. }
$$

2. However,

$$
S(\Phi)=\frac{1}{2} \cdot S\left(\left.\Phi\right|_{x_{1}=1}\right)+\frac{1}{2} \cdot S\left(\left.\Phi\right|_{x_{1}=0}\right) .
$$

Hence at least one choice of $x_{1}=t_{1}$ can make

$$
S(\Phi) \leq S\left(\left.\Phi\right|_{x_{1}=t_{1}}\right) \text { where } t_{i} \in\{0,1\}
$$

3. We can continue this process for $i=2, \ldots, n$, and finally

$$
S(\Phi) \leq S\left(\left.\Phi\right|_{x_{1}=t_{1}}\right) \leq S\left(\left.\Phi\right|_{x_{1}=t_{1}, x_{2}=t_{2}}\right) \leq \cdots \leq S\left(\left.\Phi\right|_{x_{1}=t_{1}, \ldots, x_{n}=t_{n}}\right)
$$

That is, we get an assignment $\left\{x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right\}$ that satisfies at least $S(\Phi)$ clauses.
4. If each C_{i} has at least k literals, we have

$$
\begin{aligned}
& \operatorname{Pr}_{T}[T \models C]=E[\mathrm{C} \text { is satisfiable }] \geq 1-\frac{1}{2^{k}} \\
& \therefore S(\Phi)=\sum_{i=1}^{m} \operatorname{Pr}_{T}\left[T \models C_{i}\right] \geq m\left(1-\frac{1}{2^{k}}\right)
\end{aligned}
$$

That is, we get an assignment that satisfies at least $m\left(1-\frac{1}{2^{k}}\right)$ clauses.
5. There are at most m clauses that can be satisfied (i.e. an upper bound for the optimum).

$$
\therefore \text { performance ratio } \leq \frac{m}{m\left(1-\frac{1}{2^{k}}\right)}=1+\frac{1}{2^{k}-1} .
$$

6. Since k is always at least 1 , the above algorithm is a 2-approximation algorithm for MAXSAT.

Maximum Cut

Problem (MAX-CUT)

Given a graph $G=(V, E)$, partition V into two sets S and $V-S$ such that there are as many edges as possible between S and $V-S$.

Algorithm based on local improvement

1. Start from any partition S.
2. If the cut can be made large by

- adding a single node to S, or by
- removing a single node from S, then do so;

Until no improvement is possible.

Theorem This is a 2-approximation algorithm. Proof.

1. Decompose V into four parts: $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ such that our heuristic is $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$ where as the optimum is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
2. Let $e_{i j}$ be the number of edges between V_{i} and V_{j} for $1 \leq i \leq j \leq 4$.
3. Then we want to bound

$$
\frac{e_{12}+e_{14}+e_{23}+e_{34}}{e_{13}+e_{14}+e_{23}+e_{24}}
$$

by a constant.
4.

$$
\begin{gathered}
2 e_{11}+e_{12} \leq e_{13}+e_{14} \Rightarrow e_{12} \leq e_{13}+e_{14} \\
e_{12} \leq e_{23}+e_{24}
\end{gathered}
$$

$$
\begin{aligned}
& e_{34} \leq e_{23}+e_{13} \\
& e_{34} \leq e_{14}+e_{24}
\end{aligned}
$$

5.

$$
\begin{aligned}
\therefore e_{12}+e_{34} & \leq e_{13}+e_{14}+e_{23}+e_{24} \\
e_{14}+e_{23} & \leq e_{13}+e_{14}+e_{23}+e_{24}
\end{aligned}
$$

6.

$$
\therefore e_{12}+e_{14}+e_{23}+e_{34} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

Therefore, the performance ratio is bounded above by 2 .

Traveling Salesman Problem

Theorem Unless $P=N P$, there is no constant performance ratio for TSP. (That is, TSP \notin APX unless $P=N P$.)
Proof. Suppose TSP is c-approximable for some constant c. Then we can solve Hamilton Cycle in polynomial time.

1. Given any graph $G=(V, E)$, assign

$$
d(i, j)=\left\{\begin{array}{cc}
1 & \text { if }(i, j) \in E \\
c|V| & \text { if }(i, j) \notin E
\end{array}\right.
$$

2. If there is a c-approximation that can solve this instance in polynomial time, we can determine whether G has an HC in poly. time.
3. Suppose G has an HC. Then the approximation algorithm returns a solution with total distance at most $c|V|$, which
means it cannot include any $(i, j) \notin E$.

Remark There is a $\frac{3}{2}$-approximation algorithm for TSP when its distance satisfies the triangle inequality $d(i, j)+d(j, k) \leq d(i, k)$.

Knapsack

Problem Given n weights $w_{i}, 1, \ldots, n$, a weight limit \mathcal{W}, and n values $v_{i}, i=1, \ldots, n$, find a subset $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq \mathcal{W}$ and $\sum_{i \in S} v_{i}$ is maximum.

Pseudopolynomial algorithm

$V(w, i)$: the largest value from the first i items so that their total weight is $\leq w$

$$
\begin{aligned}
V(w, i) & =\max \left\{V(w, i-1), V\left(w-w_{i}, i-1\right)+v_{i}\right\} \\
V(w, 0) & =0
\end{aligned}
$$

The time complexity is $O(n \mathcal{W})$.

Another algorithm

1. Let $\mathcal{V}=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
2. Define $W(i, v)$ to be the minimum weight from the first i items so that their total value is \mathcal{V}.
3.

$$
\begin{aligned}
W(i, v) & =\min \left\{W(i-1, v), W\left(i-1, v-v_{i}\right)+w_{i}\right\} \\
W(0,0) & =0 \\
W(0, v) & =\infty \text { if } v>0
\end{aligned}
$$

Time complexity is $O\left(n^{2} \mathcal{V}\right)$ since $1 \leq i \leq n$ and $0 \leq v \leq n \mathcal{V}$.

Approximation algorithm

Given $x=\left(w_{1}, \ldots, w_{n}, \mathcal{W}, v_{1}, \ldots, v_{n}\right)$, construct $x^{\prime}=\left(w_{1}, \ldots, w_{n}, \mathcal{W}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ where $v_{i}^{\prime}=2^{b} \cdot\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor$ for some parameter b. We can find optimal solution for x^{\prime} in time $O\left(\frac{n^{2} \mathcal{V}}{2^{b}}\right)$, using it as an approximate solution for x.

Theorem The above approximation algorithm is a polynomial-time approximation scheme.
(In fact, it is an FPTAS.)

Proof.

$$
\sum_{i \in S} v_{i} \geq \sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

S : optimal for $x ; S^{\prime}$: optimal for x^{\prime}

Performance ratio

$$
\frac{\sum_{i \in S} v_{i}}{\sum_{i \in S^{\prime}} v_{i}} \leq \frac{\sum_{i \in S} v_{i}}{\sum_{i \in S} v_{i}-n 2^{b}}=\frac{1}{1-\frac{n 2^{b}}{\sum_{i \in S} v_{i}}} \leq \frac{1}{1-\frac{n 2^{b}}{\mathcal{V}}} \leq \frac{1}{1-\epsilon}
$$

by setting $b=\left\lceil\lg \frac{\epsilon \mathcal{V}}{n}\right\rceil$.
Time complexity becomes $O\left(\frac{n^{2} \mathcal{V}}{2^{b}}\right)=O\left(\frac{n^{3}}{\epsilon}\right)$.
\therefore performance ratio $=\frac{1}{1-\epsilon}$, which can be arbitrarily close to 1 .

Approximation Preserving Reductions

L-reduction $\left(A \leq_{L} B\right)$

A, B : two optimization problems
f : a function from instances of A to instances of B
g : a function from feasible solutions of $f(x)$ to feasible solutions of x
(f, g) is called an L-reduction iff

1. f and g are computable in logarithmic space;
2. there exists constant α such that

$$
O P T(f(x)) \leq \alpha \cdot O P T(x)
$$

for all instances x of A;
3. there exists constant β such that

$$
\left|O P T(x)-m_{A}(x, g(s))\right| \leq \beta \cdot\left|O P T(f(x))-m_{B}(f(x), s)\right|
$$

where s is any feasible solution of $f(x)$.

Remark

- L-reductions are transitive. $\left(A \leq_{L} B\right.$ and $B \leq_{L} C \Rightarrow A \leq_{L} C$.)
- If there is an L-reduction from A to B and $B \in A P X$, then we have $A \in A P X$.
- L-reductions are closed in $A P X, P T A S$, and $F P T A S$.

AP-reduction $A \leq_{A P} B$

A, B : two optimization problems
f : a function $I_{A} \times(1, \infty) \rightarrow I_{B}$ (I_{A} : instances of $A ; I_{B}$: instances of B)
$g:$ a function $I_{A} \times F_{B} \times(1, \infty) \rightarrow F_{A}$
(F_{A} : feasible solutions for $A ; F_{B}$: feasible solutions for B)
(R, S) is called an $A P$-reduction iff

1. $F_{B}(f(x, r)) \neq \emptyset$ if $F_{A}(x) \neq \emptyset$ for all $x \in I_{A}$ and $r>1$; (x has solutions implies $f(x, r)$ has solutions)
2. $g(x, y, r) \in F_{A}(x)$ for any $x \in I_{A}, y \in F_{B}(f(x, r))$ and $r>1$; (the solution for $f(x, r)$ can be sent back to be one for x by g)
3. f and g are computable in logarithmic space for any fixed rational $r>1$;
4. there exists constant α such that
$R_{A}(x, g(x, y, r)) \leq 1+\alpha(r-1)$ whenever $R_{B}(f(x, r), y) \leq r$ for all $x \in I_{A}, y \in F_{B}(f(x, r))$ and $r>1$.
(the performance ratio for B is preserved in A by (f, g))

Theorem Let $A \in A P X$. If $A \leq_{L} B$, then $A \leq_{A P} B$.
(That is, $A P$-reducibility is more general than L-reducibility.)

Theorem MAX3SAT is APX-complete under $A P$-reducibility.

Remarks

- APX-completeness (under $A P$-reductions) is built by the PCP-characterization of NP.
- L-reducibility builds MAXSNP-completeness.

