Theory of Computation
Chapter 13: Approximability

Guan-Shieng Huang
Jan. 3, 2007

0-0

/ Decision v.s. Optimization Problems \

decision problems: expect a “yes” /“no” answer

optimization problems: expect an optimal solution from all

feasible solutions

-

When an optimization problem is proved to be NP-complete, the

next step is

e to find useful heuristics
e to develop approximation algorithms
e to use randomness

e to invest on average-case analyses

~

@ N

Definition (optimization problem)
1. For each instance x there is a set of feasible solutions F'(x).

2. For each y € F(x), there is a positive integer m(x,y), which
measures the the cost (or benefit) of y.

3. OPT(xz) = m*(x) = minye p(5) m(z,y)(minimization problem)

OPT(z) = m*(r) = maxycp(z) m(x,y)(maximization problem)

Definition (NPO)
NPO is the class of all optimization problems whose decision
counterparts are in NP.

1. y € F(z) = |y| < |z|* for some k;

2. whether y € F(x) can be determined in polynomial time;

\3. m(x,y) can be evaluated in poly. time. /

3

-

Definition (Relative approximation)
x: an instance of an optimization problem P

y: any feasible solution of x

m*(z) —m(z,y)|

E(x,y) = max{m*(x), m(x,y)}

Remarks
1. 0 < E(x,y) <1;
2. E(x,y) = 0 when the solution is optimalj;

3. E(x,y) — 1 when the solution is very poor.

-

-

Definition (Performance ratio)
x: an instance of an optimization problem P

y: any feasible solution of x

R(z,y) = max (mw) m* ())

m*(z) " m(z,y)

Remarks
1. R(z,y) > 1;
2. R(x,y) = 1 means that y is optimal;

-

-

Definition (r-approximation)
A(x): approximate solution of x for algorithm A

We say A is an r-approximation if

VeR(z, A(x)) <.

Remark
An r-approximation is also an r’-approximation if r < r’.
That is, the approximation becomes more difficult as r becomes

smaller.

Definition (APX)
APX is the class of all NPO problems that have r-approximation

algorithm for some constant r.

-

-

-

Definition (Polynomial-time approximation scheme)
P: NPO problem
We say A is a PTAS for P if

1. A has two parameters r and x where x’s are instances of P;

2. when r is fixed to a constant with r» > 1, A(r, x) returns an

r-approximate solution of x in polynomial time in |z|.

Remark
The time complexity of A could be

1

O™ (712, 0(n (r = 1)71%%), 0(n°27T)

where n = |x|. All of these are polynomial in n.

~

-

Definition (PTAS)
PTAS is the class of all NPO problems that admit a polynomial

tome approximation scheme.

Definition (Fully polynomial-time approximation scheme)
1. A has two parameters r and x where x’s are instances of P;

2. A(r,z) returns an r-approximate solution of z in polynomial

1

time both in |z| and ——

(since the approximation becomes more difficult when r — 1).

/ Node Cover \

Problem
Given a graph G = (V, F), seek a smallest set of nodes C' C V such
that for each edge F at least one of its endpoints is in C.

Greedy heuristic:

1. Let C = 0.

2. While there are still edges left in (G, choose the node in GG with
the largest degree, add it to C, and delete it from G.

However, the performance ratio is lgn.

. /

a N

2-approximation algorithm
1. Let C = 0.
2. While there are still edges left in G do

(a) choose any edge (u,v);
(b) add both u and v to C}
(c) delete both u and v from G.

Theorem
This algorithm is a 2-approximation algorithm.
Proof. C contains %\C’ | edges that share no common nodes. The

optimum must contain at least one end points of these edges.

.,
OPT(G) =~

. /

10

1
. OPT(G) > §|C\ =

/ Maximum Satisfiability \

Problem (MAXSAT)
Given a set of clauses, find a truth assignment that satisfies the

most of the clauses.

The following is a probabilistic argument that leads us to choose a

good assignment.

1. If ® has m clauses C1 A C5 A --- A C,,, the expected number of

satisfied clauses is

Z Pr|T = C;] where T is a random assignment.

2. However,

1
S(®la,1) + 5 S(@la,—0).

/

11

/ Hence at least one choice of x1 = t; can make

S(®) < S(P|y,—¢,) where t; € {0,1}.

3. We can continue this process for : = 2, ..., n, and finally

that satisfies at least S(®) clauses.

4. If each C; has at least k literals, we have

1
I;r[T = C] = E|C is satisfiable] > 1 — o
Zm 1

\ clauses.

That is, we get an assignment that satisfies at least m(1 —

That is, we get an assignment {z1 =t1,20 =t2,..., Ty = s}

~

S((I)) < S((I)|$1=t1) < S((I)|$1=t1,l‘2=t2) < - < S((I)|$1=t1,---,$n=tn)'

12

/5. There are at most m clauses that can be satisfied (i.e. an uppg

bound for the optimum).

: m 1
.. performance ratio < =1+

m(1— 55) 2k —1°

6. Since k is always at least 1, the above algorithm is a

2-approximation algorithm for MAXSAT.

13

/ Maximum Cut \

Problem (MAX-CUT)

Given a graph G = (V, F), partition V into two sets S and V — S
such that there are as many edges as possible between S and

vV -_5.

Algorithm based on local improvement
1. Start from any partition S.

2. If the cut can be made large by
e adding a single node to S, or by
e removing a single node from .S, then do so;

Until no improvement is possible.

. /

14

/Theorem This is a 2-approximation algorithm. \
Proof.

1. Decompose V into four parts: V = V; U Vo U V3 U Vy such that

our heuristic is (V1 U Vo, V3 U Vy) where as the optimum is
(ViU Vs, Vo UVy).

2. Let e;; be the number of edges between V; and V; for
1<i<j<A4

3. Then we want to bound
€12 + €14 + €23 + €34
€13 + €14 1+ €23 + €24

by a constant.

2e11 +e12 < e13+ ey = e12 < e13 + eqy;

\ e12 < €23 + €24; /

15

€34 < €23 + €13;

€34 < €14 + €24.

€12 +e34 < €13 + e14 + €23 + ea4;

€14 + €23 < €13 + €14 + €23 + €24.

C.eiate1q +eas+esq < 2(e1s + e1q + ea3 + €24).

Therefore, the performance ratio is bounded above by 2.

16

/ Traveling Salesman Problem \

Theorem Unless P = NP, there is no constant performance
ratio for TSP. (That is, TSP ¢ APX unless P = NP.)
Proof. Suppose TSP is c-approximable for some constant c.
Then we can solve Hamilton Cycle in polynomial time.

1. Given any graph G = (V, E), assign

1 if(i,j) € E

d(i. 7) =
BIDZN v it ¢

2. If there is a c-approximation that can solve this instance in
polynomial time, we can determine whether G has an HC in
poly. time.

3. Suppose GG has an HC. Then the approximation algorithm
\ returns a solution with total distance at most ¢|V|, which /

17

/ means it cannot include any (i, j) € E. \

3
3
distance satisfies the triangle inequality d(i, j) + d(j, k) < d(i, k).

Remark There is a s-approximation algorithm for TSP when its

18

/ Knapsack \

Problem Given n weights w;, 1,...,n, a weight limit W, and n
values v;, i = 1,...,n, find a subset S C {1,2,...,n} such that
D icsWi <Wand) ..o v; is maximum.

19

@ N

Pseudopolynomial algorithm
V(w,1): the largest value from the first ¢ items so that their total
weight is < w
V(w,i) = max{V(w,i—1),V(w—w;i—1)+v;}
V(w,0) = 0

The time complexity is O(nW).

20

4 N

Another algorithm

1. Let V = max{vy,va,...,v,}.

2. Define W (%, v) to be the minimum weight from the first ¢ items
so that their total value is V.

3.
Wi,v) = min{W(@E —1,v),W(E —1,v—v;) +w;}
W(0,0) = 0
W(0,v) = ooifv>0.

Time complexity is O(n?V) since 1 < i <n and 0 < v < nV.

. /

21

4 N

Approximation algorithm

Given z = (wq, ..., wn, W, v1,...,0,), construct

v’ = (wi,...,wp, W,v],...,v,) where v] = 2" - | 2 | for some

2
n2bV)7

parameter b. We can find optimal solution for z’ in time O(

using it as an approximate solution for =.

Theorem The above approximation algorithm is a

polynomial-time approximation scheme.
(In fact, it is an FPTAS.)
Proof.

E v; > E v; > E Vi > E UQZE v; —n2°.
i€S i€ S’ €S i€ S i€ S

S: optimal for x; S’: optimal for z’

. /

22

/Performance ratio

2ics Vi DiesVi 1 1 1
< b n2b < n2b <
DTS SR R s g

by setting b = [lg %]

Time complexity becomes O(”;bv) = O(”?S)
1

.. performance ratio = =, which can be arbitrarily close to 1.

23

/ Approximation Preserving Reductions \

L-reduction (A <; B)
A, B: two optimization problems
f: a function from instances of A to instances of B

g: a function from feasible solutions of f(x) to feasible solutions of

x
(f,g) is called an L-reduction iff
1. f and g are computable in logarithmic space;

2. there exists constant o such that

OPT(f(x)) <a-OPT(x)

\ for all instances = of A; /

24

/3. there exists constant (3 such that \

|OPT (x) —ma(x,9(s))| < 8- |OPT(f(x)) —mp(f(x),s)]

where s is any feasible solution of f(x).

Remark
e [-reductions are transitive. (A <, B and B <, C = A <, (")

e If there is an L-reduction from A to B and B € APX, then we
have A € APX.

e [-reductions are closed in APX, PT'AS, and FPTAS.

- /

25

4 N

AP-reduction A <,p B

A, B: two optimization problems

f: a function I4 x (1,00) — Ip

(I4: instances of A; Ip: instances of B)

g: a function Iy X Fg X (1,00) — Fs
(F'a: feasible solutions for A; Fg: feasible solutions for B)

(R, S) is called an AP-reduction iff

1. Fp(f(x,7)) #0if Fa(x) # 0 for all x € T4 and r > 1;
(x has solutions implies f(z,r) has solutions)

2. g(x,y,7r) € Fa(x) for any x € 14, y € Fg(f(z,r)) and r > 1;
(the solution for f(x,r) can be sent back to be one for x by g)

3. f and g are computable in logarithmic space for any fixed

\ rational r > 1; /

26

/4. there exists constant a such that \

Ra(x,9(x,y,7)) <1+ a(r — 1) whenever Rp(f(x,7),y) <r for
all z € T4,y € Fp(f(x,r)) and r > 1.
(the performance ratio for B is preserved in A by (f,g))

Theorem Let Aec APX. If A<y B, then A <,p B.
(That is, AP-reducibility is more general than L-reducibility.)

Theorem MAX3SAT is APX-complete under AP-reducibility.

Remarks

e APX-completeness (under AP-reductions) is built by the
PCP-characterization of NP.

\o L-reducibility builds MAXSNP-completeness. /

27

