
Theory of Computation

Chapter 13: Approximability

Guan-Shieng Huang

Jan. 3, 2007

0-0

'

&

$

%

Decision v.s. Optimization Problems

decision problems: expect a “yes”/“no” answer

optimization problems: expect an optimal solution from all

feasible solutions

1

'

&

$

%

When an optimization problem is proved to be NP-complete, the

next step is

• to find useful heuristics

• to develop approximation algorithms

• to use randomness

• to invest on average-case analyses

2

'

&

$

%

Definition (optimization problem)

1. For each instance x there is a set of feasible solutions F (x).

2. For each y ∈ F (x), there is a positive integer m(x, y), which

measures the the cost (or benefit) of y.

3. OPT (x) = m∗(x) = miny∈F (x) m(x, y)(minimization problem)

OPT (x) = m∗(x) = maxy∈F (x) m(x, y)(maximization problem)

Definition (NPO)

NPO is the class of all optimization problems whose decision

counterparts are in NP.

1. y ∈ F (x) ⇒ |y| ≤ |x|k for some k;

2. whether y ∈ F (x) can be determined in polynomial time;

3. m(x, y) can be evaluated in poly. time.

3

'

&

$

%

Definition (Relative approximation)

x: an instance of an optimization problem P

y: any feasible solution of x

E(x, y) =
|m∗(x) − m(x, y)|

max{m∗(x), m(x, y)}

Remarks

1. 0 ≤ E(x, y) ≤ 1;

2. E(x, y) = 0 when the solution is optimal;

3. E(x, y) → 1 when the solution is very poor.

4

'

&

$

%

Definition (Performance ratio)

x: an instance of an optimization problem P

y: any feasible solution of x

R(x, y) = max

(

m(x, y)

m∗(x)
,

m∗(x)

m(x, y)

)

Remarks

1. R(x, y) ≥ 1;

2. R(x, y) = 1 means that y is optimal;

3. E(x, y) = 1 − 1
R(x,y) .

5

'

&

$

%

Definition (r-approximation)

A(x): approximate solution of x for algorithm A

We say A is an r-approximation if

∀xR(x, A(x)) ≤ r.

Remark

An r-approximation is also an r′-approximation if r ≤ r′.

That is, the approximation becomes more difficult as r becomes

smaller.

Definition (APX)

APX is the class of all NPO problems that have r-approximation

algorithm for some constant r.

6

'

&

$

%

Definition (Polynomial-time approximation scheme)

P : NPO problem

We say A is a PTAS for P if

1. A has two parameters r and x where x’s are instances of P ;

2. when r is fixed to a constant with r > 1, A(r, x) returns an

r-approximate solution of x in polynomial time in |x|.

Remark

The time complexity of A could be

O(nmax{ 1

r−1
,2}), O(n5(r − 1)−100), O(n52

1

r−1)

where n = |x|. All of these are polynomial in n.

7

'

&

$

%

Definition (PTAS)

PTAS is the class of all NPO problems that admit a polynomial

tome approximation scheme.

Definition (Fully polynomial-time approximation scheme)

1. A has two parameters r and x where x’s are instances of P ;

2. A(r, x) returns an r-approximate solution of x in polynomial

time both in |x| and 1
r−1

(since the approximation becomes more difficult when r → 1).

8

'

&

$

%

Node Cover

Problem

Given a graph G = (V, E), seek a smallest set of nodes C ⊆ V such

that for each edge E at least one of its endpoints is in C.

Greedy heuristic:

1. Let C = ∅.

2. While there are still edges left in G, choose the node in G with

the largest degree, add it to C, and delete it from G.

However, the performance ratio is lg n.

9

'

&

$

%

2-approximation algorithm

1. Let C = ∅.

2. While there are still edges left in G do

(a) choose any edge (u, v);

(b) add both u and v to C;

(c) delete both u and v from G.

Theorem

This algorithm is a 2-approximation algorithm.

Proof. C contains 1
2 |C| edges that share no common nodes. The

optimum must contain at least one end points of these edges.

∴ OPT (G) ≥
1

2
|C| ⇒

|C|

OPT (G)
≤ 2.

10

'

&

$

%

Maximum Satisfiability

Problem (MAXSAT)

Given a set of clauses, find a truth assignment that satisfies the

most of the clauses.

The following is a probabilistic argument that leads us to choose a

good assignment.

1. If Φ has m clauses C1 ∧ C2 ∧ · · · ∧ Cm, the expected number of

satisfied clauses is

S(Φ) =

m
∑

i=1

Pr[T |= Ci] where T is a random assignment.

2. However,

S(Φ) =
1

2
· S(Φ|x1=1) +

1

2
· S(Φ|x1=0).

11

'

&

$

%

Hence at least one choice of x1 = t1 can make

S(Φ) ≤ S(Φ|x1=t1) where ti ∈ {0, 1}.

3. We can continue this process for i = 2, . . . , n, and finally

S(Φ) ≤ S(Φ|x1=t1) ≤ S(Φ|x1=t1,x2=t2) ≤ · · · ≤ S(Φ|x1=t1,...,xn=tn
).

That is, we get an assignment {x1 = t1, x2 = t2, . . . , xn = tn}

that satisfies at least S(Φ) clauses.

4. If each Ci has at least k literals, we have

Pr
T

[T |= C] = E[C is satisfiable] ≥ 1 −
1

2k
.

∴ S(Φ) =
m

∑

i=1

Pr
T

[T |= Ci] ≥ m(1 −
1

2k
).

That is, we get an assignment that satisfies at least m(1 − 1
2k)

clauses.

12

'

&

$

%

5. There are at most m clauses that can be satisfied (i.e. an upper

bound for the optimum).

∴ performance ratio ≤
m

m(1 − 1
2k)

= 1 +
1

2k − 1
.

6. Since k is always at least 1, the above algorithm is a

2-approximation algorithm for MAXSAT.

13

'

&

$

%

Maximum Cut

Problem (MAX-CUT)

Given a graph G = (V, E), partition V into two sets S and V − S

such that there are as many edges as possible between S and

V − S.

Algorithm based on local improvement

1. Start from any partition S.

2. If the cut can be made large by

• adding a single node to S, or by

• removing a single node from S, then do so;

Until no improvement is possible.

14

'

&

$

%

Theorem This is a 2-approximation algorithm.

Proof.

1. Decompose V into four parts: V = V1 ∪ V2 ∪ V3 ∪ V4 such that

our heuristic is (V1 ∪ V2, V3 ∪ V4) where as the optimum is

(V1 ∪ V3, V2 ∪ V4).

2. Let eij be the number of edges between Vi and Vj for

1 ≤ i ≤ j ≤ 4.

3. Then we want to bound

e12 + e14 + e23 + e34

e13 + e14 + e23 + e24

by a constant.

4.

2e11 + e12 ≤ e13 + e14 ⇒ e12 ≤ e13 + e14;

e12 ≤ e23 + e24;

15

'

&

$

%

e34 ≤ e23 + e13;

e34 ≤ e14 + e24.

5.

∴ e12 + e34 ≤ e13 + e14 + e23 + e24;

e14 + e23 ≤ e13 + e14 + e23 + e24.

6.

∴ e12 + e14 + e23 + e34 ≤ 2(e13 + e14 + e23 + e24).

Therefore, the performance ratio is bounded above by 2.

16

'

&

$

%

Traveling Salesman Problem

Theorem Unless P = NP , there is no constant performance

ratio for TSP. (That is, TSP 6∈ APX unless P = NP .)

Proof. Suppose TSP is c-approximable for some constant c.

Then we can solve Hamilton Cycle in polynomial time.

1. Given any graph G = (V, E), assign

d(i, j) =







1 if (i, j) ∈ E

c|V | if (i, j) 6∈ E

2. If there is a c-approximation that can solve this instance in

polynomial time, we can determine whether G has an HC in

poly. time.

3. Suppose G has an HC. Then the approximation algorithm

returns a solution with total distance at most c|V |, which

17

'

&

$

%

means it cannot include any (i, j) 6∈ E.

Remark There is a 3
2 -approximation algorithm for TSP when its

distance satisfies the triangle inequality d(i, j) + d(j, k) ≤ d(i, k).

18

'

&

$

%

Knapsack

Problem Given n weights wi, 1, . . . , n, a weight limit W, and n

values vi, i = 1, . . . , n, find a subset S ⊆ {1, 2, . . . , n} such that
∑

i∈S wi ≤ W and
∑

i∈S vi is maximum.

19

'

&

$

%

Pseudopolynomial algorithm

V (w, i): the largest value from the first i items so that their total

weight is ≤ w

V (w, i) = max{V (w, i − 1), V (w − wi, i − 1) + vi}

V (w, 0) = 0

The time complexity is O(nW).

20

'

&

$

%

Another algorithm

1. Let V = max{v1, v2, . . . , vn}.

2. Define W (i, v) to be the minimum weight from the first i items

so that their total value is V .

3.

W (i, v) = min{W (i − 1, v), W (i − 1, v − vi) + wi}

W (0, 0) = 0

W (0, v) = ∞ if v > 0.

Time complexity is O(n2V) since 1 ≤ i ≤ n and 0 ≤ v ≤ nV .

21

'

&

$

%

Approximation algorithm

Given x = (w1, . . . , wn,W, v1, . . . , vn), construct

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n) where v′i = 2b · b vi

2b c for some

parameter b. We can find optimal solution for x′ in time O(n2V
2b),

using it as an approximate solution for x.

Theorem The above approximation algorithm is a

polynomial-time approximation scheme.

(In fact, it is an FPTAS.)

Proof.

∑

i∈S

vi ≥
∑

i∈S′

vi ≥
∑

i∈S′

v′i ≥
∑

i∈S

v′i ≥
∑

i∈S

vi − n2b.

S: optimal for x; S′: optimal for x′

22

'

&

$

%

Performance ratio
∑

i∈S vi
∑

i∈S′ vi

≤

∑

i∈S vi
∑

i∈S vi − n2b
=

1

1 − n2b
∑

i∈S
vi

≤
1

1 − n2b

V

≤
1

1 − ε

by setting b = dlg εV
n
e.

Time complexity becomes O(n2V
2b) = O(n3

ε
).

∴ performance ratio = 1
1−ε

, which can be arbitrarily close to 1.

23

'

&

$

%

Approximation Preserving Reductions

L-reduction (A ≤L B)

A, B: two optimization problems

f : a function from instances of A to instances of B

g: a function from feasible solutions of f(x) to feasible solutions of

x

(f, g) is called an L-reduction iff

1. f and g are computable in logarithmic space;

2. there exists constant α such that

OPT (f(x)) ≤ α · OPT (x)

for all instances x of A;

24

'

&

$

%

3. there exists constant β such that

|OPT (x) − mA(x, g(s))| ≤ β · |OPT (f(x)) − mB(f(x), s)|

where s is any feasible solution of f(x).

Remark

• L-reductions are transitive. (A ≤L B and B ≤L C ⇒ A ≤L C.)

• If there is an L-reduction from A to B and B ∈ APX , then we

have A ∈ APX .

• L-reductions are closed in APX , PTAS, and FPTAS.

25

'

&

$

%

AP-reduction A ≤AP B

A, B: two optimization problems

f : a function IA × (1,∞) → IB

(IA: instances of A; IB: instances of B)

g: a function IA × FB × (1,∞) → FA

(FA: feasible solutions for A; FB: feasible solutions for B)

(R, S) is called an AP -reduction iff

1. FB(f(x, r)) 6= ∅ if FA(x) 6= ∅ for all x ∈ IA and r > 1;

(x has solutions implies f(x, r) has solutions)

2. g(x, y, r) ∈ FA(x) for any x ∈ IA, y ∈ FB(f(x, r)) and r > 1;

(the solution for f(x, r) can be sent back to be one for x by g)

3. f and g are computable in logarithmic space for any fixed

rational r > 1;

26

'

&

$

%

4. there exists constant α such that

RA(x, g(x, y, r)) ≤ 1 + α(r − 1) whenever RB(f(x, r), y) ≤ r for

all x ∈ IA, y ∈ FB(f(x, r)) and r > 1.

(the performance ratio for B is preserved in A by (f, g))

Theorem Let A ∈ APX . If A ≤L B, then A ≤AP B.

(That is, AP -reducibility is more general than L-reducibility.)

Theorem MAX3SAT is APX-complete under AP -reducibility.

Remarks

• APX-completeness (under AP -reductions) is built by the

PCP-characterization of NP.

• L-reducibility builds MAXSNP-completeness.

27

