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Introduction

Alice wants to communicate with Bob secretely.

Alice Bob

John

x

Alice Bob

John

y=E(e,x) y

y ???

Assumption

• The encryption method is publicly known.

• The transmission is intercepted by John.

• John is malevolent; he may send fake messages to deceive Bob.
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Requirements

1. D(d, E(e, x)) = x

2. D and E are polynomial-time algorithms

3. John cannot compute x from y without knowing d.

One-time pad (information secure)

Let e = d, a random string of length the same as x.

Let E(e, x) = e ⊕ x and D(d, y) = d ⊕ y.

Then D(d, E(e, x)) = d ⊕ (e ⊕ x) = x.

And if John knows x and y, he knows d.
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Problems with one-time pad

• How to agree upon the key (i.e. d and e)?

• The keys are too long, and this makes frequent routine

communication impossible.

Remarks

• One-time pad is information secure.

• Computer scientists focus on computational secure protocols.

3



'

&

$

%

Public-Key Cryptography

Scheme

1. Bob: generates (e, d) and announces e.

(d is kept secretly by Bob himself.)

2. Alice: sends a message x to Bob by computing and

transmitting y where y = E(e, x).

3. Bob: gets x by computing D(d, y).

Requirements

• It is computationally infeasible to deduce d from e and x from

y without knowing d.

• E(e, x) and D(d, y) can be computed in polynomial time.

• x = D(d, E(e, x)).

4



'

&

$

%

One-Way Function

f : a function from strings to string with

1. f is one-to-one;

2. for all x, |x|
1

k ≤ |f(x)| ≤ |x|k for some k > 0;

3. f can be computed in polynomial time;

4. there is no polynomial-time algorithm that computes x from

y = f(x) or returns “no” of no such an x exists. (or a stronger

version requires no polynomial fraction of )

Remark

We still not yet know the existence of true one-way functions.
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Integer multiplication

fMULT(p, C(p), q, C(q)) =







pq if Condition (1) holds

(q, C(q), q, C(q)) otherwise

Condition (1): C(p) and C(q) are valid primality certifcates

Factoring the products of two primes is believed to be difficult.
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Exponentiation modulo a prime

fEXP(p, C(p), r, x) = (p, C(p), rx mod p)

where r is a primitive root modulo p, and it is included in the

certificate C(p).

The inverse of fEXP is the famous problem to evaluate the discrete

logarithm, which is also believed to be very hard.
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RSA

A (believed) realization of a public-key cryptosystem provided by

Ron Rivest, Adi Shamir, and Len Adleman

Idea

1. Let p, q be two primes. Then

xφ(pq)+1 ≡ x (mod pq).

That is, xe mod pq is invertible whenever e ⊥ φ(pq).

2. Let ed ≡ 1 (mod φ(pq)). That is, ed = 1 + kφ(pq). Then

(xe)d = xed = x1+kφ(pq) ≡ x (mod pq).
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Scheme

1. Find primes p and q.

2. Let N = pq. Then φ(N) = pq − p − q + 1.

3. Find e ⊥ φ(N). Then there is d such that ed ≡ 1 (mod φ(N)).

4. Make (N, e) public.

5. Define

E(e, N, x) = xe mod N

D(d, N, y) = yd mod N

Each one keeps a private key d and announces the public key e and

the modulus N .

Then

(xe)d ≡ x (mod N).

9



'

&

$

%

The RSA function

fRSA(x, e, p, C(p), q, C(q)) = (xe mod pq, pq, e)

whenever e ⊥ pq and C(p) and C(q) are primality certificates for p

and q.

Remarks

• Once we can factor pq, we can recover d from φ(pq).

=⇒ Inverting fRSA can be reduced to inverting fMULT.

• There are variants of the cryptosystem that are as hard as

factoring the product of two primes.
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Cryptography and Complexity

UP : Unambiguous non-deterministic Polynomial time

A language is in UP iff it can be decided by a non-deterministic

Turing machine such that for any input x there is at most one

accepting computation.

Clearly, P ⊆ UP ⊆ NP .

Theorem UP=P if and only if there are no one-way functions.

Remark The notion of worst-case performance of algorithms is

inadequate for approaching the issue of secure cryptography.
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Trapdoor Function
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Randomized Cryptography

How to transmit a frequent message? Such as one bit b ∈ {0, 1}?

1. Generate an random number x ≤ pq
2 .

2. Transmit y = (2x + b)e mod pq.

Remark

The last bit of an integer is exactly as secure as the RSA public-key

cryptosystem.
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Protocols

• Signatures

• Mental Poker

• Zero Knowledge
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Signature

It should

• contain the information of the original message;

• be modified in a way that unmistakably identifies the sender.

Protocol

S(x) = (x, xd mod pq) = (x, y)

And one who wants to verify the signature can test if

ye mod pq = x.

The point is that, one cannot generate y without knowing d.
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Mental Poker

How to distribute a deck of cards fairly?

• One card can be distributed to only one player.

• The probability that all players get the same card are the same.

• There is no dealer.

• Some cards are more desired than others.

• Each player does not know other players’ cards.

Let’s consider three numbers a < b < c as the cards, Alice and Bob

as the players.

Each player gets one card, and the one who gets the larger number

wins.
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The protocol:

1. Alice and Bob agree on a large prime p.

2. Each has two secret keys: (eA, dA) and (eB , dB) such that

eAdA ≡ eBdB ≡ 1 (mod p − 1).

(This implies xeAdA ≡ xeBdB ≡ x (mod p).)

Alice: E(eA, x) = xeA mod p; D(dA, y) = yeA mod p

Bob: E(eB , x) = xeB mod p; D(dB, y) = yeB mod p

3. Alice encodes a, b, c and sends them to Bob in a random order.

4. Bob chooses one number, say x, for Alice.

Alice decodes x and she knows her card.

5. Bob encodes the remaining two numbers, sends then to Alice in

random order.

6. Alice chooses one from the two, decodes it by her dA, and
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sends it to Bob (say y).

7. Bob decodes y, and he knows his card.
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Interactive Proofs

An interactive proof system (A, B) between Alice and Bob is

1. Alice runs an exponential-time algorithm;

2. Bob runs a poly.-time randomized algorithms;

3. Alice sends m2i−1 = A(x; m1; . . . ; m2i−2);

Bob sends m2i = B(x; m1; . . . ; m2i−1;ri
) where ri is a random

string;

i, |ri|, |mi| ≤ |x|k for some k > 0 .

4. The last message, which is sent by Bob, ∈ {“yes”, “no”}.

(A, B) decides a language L iff

• x ∈ L ⇒ x accepted by (A, B) with Prob. ≥ 1 − 1
2|x| ;

• x 6∈ L ⇒ x accepted by (A′, B) with Prob. ≤ 1
2|x| for any

exponential-time algorithm A′.
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Theorem NP ⊆ IP, BPP ⊆ IP.

Theorem Graph Non-isomorphism ∈ IP

Given x = (G, G′), determine whether they are non-isomorphic.

Definition G = (V, E) and G′ = (V ′, E′) are isomorphic iff there

is a bijection π from V to V ′ such that (u, v) ∈ E iff

(π(u), π(v)) ∈ E′. (WLOG, we may assume V = V ′.)
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Protocol: ith round

1. Bob:

(a) generates a random bit bi;

(b) generates a graph Gi such that Gi = G′ if bi = 1, and

Gi = G if bi = 0;

(c) sends m2i−1 = (G, πi(Gi)) where πi is a random

permutation on the labels of the vertices.

2. Alice checks whether (G, πi(Gi)) are non-isomorphic. If they

are, m2i = 1, otherwise m2i = 0.

Finally, Bob checks if (b1, . . . , b|x|) is identical to (m2, . . . , m2|x|).

Answer “yes” if it is the case; otherwise answer “no”.
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Zero Knowledge

Alice wants to convince Bob that she knows something, but she

does not like to leak any other information about this except just

convincing Bob.

Definition (3-Coloring) : Given a graph. decide whether the

nodes can be colored by just three colors such that two adjacent

nodes have different colors.
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Suppose that Alice’s coloring is χ : V 7→ {00, 01, 11}.

Protocol:

1. Alice:

(a) Generate a random permutation π of the three colors.

(b) Generate |V | RSA public-private key pairs (pi, qi, di, ei) for

each node i ∈ V .

(c) Compute the probabilistic encoding (yi, y
′
i) according to

bib
′
i = π(χ(i)) for i ∈ V . That is, yi = (2xi + bi)

ei mod piqi

and y′
i = (2x′

i + b′i)
ei mod piqi where 0 ≤ xi, x

′
i ≤

piqi

2 .

(d) Reveal (ei, piqi, yi, y
′
i) for each node i ∈ V to Bob.

2. Bob picks at random an edge (i, j) ∈ E.

3. Alice reveals to Bob the private keys di and dj .

4. Bob:

(a) Compute bi = (ydi

i mod piqi) mod 2, and similarly for

23



'

&

$

%

b′i, bj , and b′j .

(b) Check if bib
′
i 6= bjb

′
j .

If Alice intends to cheat Bob, Bob has at least |E|−1 prob. to

identify this.

Repeat this protocol k|E| times can reduce the prob. of false

positive ≤ e−k.

Remark All problems in NP have zero-knowledge proofs.

(by reduction)
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