
Theory of Computation

Chapter 11: Randomized Computation

Guan-Shieng Huang

Dec. 6, 2006

0-0

'

&

$

%

Outline

• Basic Concept

• Examples

• Complexity Classes

• Basic Techniques

1

'

&

$

%

Randomized Computation

1. Can random numbers help us solve computational problems?

2. In a randomized algorithm, we may make the following

statement:

(a) Given any number n > 2, we can decide whether n is prime

with high probability.

2

'

&

$

%

Types of Errors

• positive: when answer “yes”

negative: when answer “no”

• true positive; true negative:

The answer coincides with the fact

• false positive; false negative

The answer is wrong

Example

1. Given n = 5, suppose we want to decide whether n > 4.

If we answer “no”, then this answer is a false negative;

if we answer “yes”, then this answer is a true positive.

2. Suppose we want to decide whether n is even.

Answer “yes” =⇒ false positive; answer “no” =⇒ true negative.

3

'

&

$

%

Monte Carlo Algorithm

A randomized algorithm that never appears false positive.

• If it answers “yes”, the answer must be correct.

• If it answers “no”, the answer may be wrong.

• With high probability that it can answer “yes” if it is really

this case.

Remark Monte Carlo method or Monte Carlo simulation is a

rather general term referring to a procedure that involves

randomness.

4

'

&

$

%

Examples

• Symbolic Determinants

• Random Walks for 2SAT

• Compositeness

5

'

&

$

%

Symbolic Determinants

• Let A be an n × n matrix with each entry a multi-variate

polynomial. (x3y + 3y5z)

We want to determine whether the determinant of A is not a

zero polynomial.

• detA =
∑

π σ(π)
∏n

i=1 ai,π(i) where A = (ai,j)n×n; σ(π) = 1 if

π is an even permutation, −1 if π is odd.

6

'

&

$

%

detA =
∑

π

σ(π)
n∏

i=1

ai,π(i)

det





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





= a1,1a2,2a3,3 + a2,1a3,2a1,3 + a3,1a1,2a2,3

−a1,1a2,3a3,2 − a1,2a2,1a3,3 − a1,3a2,2a3,1

• π = [3, 2, 1] is an odd permutation.

a1,π(1)a2,π(2)a3,π(3) = a1,3a2,2a3,1

• π = [2, 3, 1] is an even permutation.

a1,π(1)a2,π(2)a3,π(3) = a1,2a2,3a3,1

7

'

&

$

%

• Gaussian elimination can solve “numerical determinants” in

polynomial time.

• No body knows how to solve the symbolic determinants in

polynomial time.

8

'

&

$

%

Randomized Algorithm for Symbolic
Determinants

Assume there are m variables in A and the highest degree if each

variable in the expansion is at most d.

1. Choose m random integers i1, . . . , im between 0 and M = 2md.

2. Compute the determinant detA(i1, . . . , im) by Gaussian

elimination.

3. If the result6= 0, reply “yes”.

4. If the result= 0, reply “probably equal to 0”.

9

'

&

$

%

Lemma 11.1 Let p(x1, . . . , xm) be a polynomial, not identically

zero, in m variables each of degree at most d in it, and let M > 0

be an integer. Then the number of m-tuples (x1, . . . , xm) ∈ Z
m
M

such that p(x1, . . . , xm) = 0 is at most mdMm−1.

Proof.

1. By induction on m. When m = 1 the lemma says that no

polynomial of degree ≤ d can have more than d roots.

2. Suppose the result is true for m − 1 variables.

Let the degree of xm is t ≤ d. We can rewrite p(x1, . . . , xm) as

q(x1, . . . , xm−1)x
t
m + r(x1, . . . , xm). Consider x1, . . . , xm−1

according to whether they can make q(x1, . . . , xm−1) = 0.

#roots ≤ (m − 1)dMm−2 · M + Mm−1t ≤ mdMm−1.

10

'

&

$

%

Random Walks for 2SAT

2SAT: Satisfiability problem with each clause containing at most

two literals.

Algorithm

1. Start with any truth assignment T .

2. Repeat the following steps r times.

(a) If there is no unsatisfied clause, reply “Formula is

satisfiable” and halt.

Otherwise, pick any unsatisfied clause, flip the value of any

one literal inside it.

3. Reply “Formula is probably unsatisfiable”.

11

'

&

$

%

Theorem Let r = 2n2. Then this algorithm can find a satisfiable

truth assignment with probability at least 1
2 when the 2SAT

formula is satisfiable.

Proof.

1. T̂ : a satisfying truth assignment for this formula

T : current assignment

2. t(i): the expectation for the number of flipping if T differs from

T̂ in exactly i values

3. t(0) = 0

t(i) ≤ 1
2 (t(i − 1) + t(i + 1)) + 1

t(n) = t(n − 1) + 1

12

'

&

$

%

4. Let x(0) = 0 x(i) = 1
2 (x(i − 1) + x(i + 1)) + 1

x(n) = x(n − 1) + 1

Then t(i) ≤ x(i) = 2in − i2 ≤ n2.

5. Let r = 2n2. Then Prob[r ≥ 2n2] ≤ 1
2 .

Lemma 11.2 (Markov Inequality) If x is a non-negative

random variable, then for any k > 0, Prob[x ≥ kµx] ≤ 1
k

where µx

is the expectation of x.

Proof. (discrete case)

µx =
∑

i

ipi =
∑

i<kµx

ipi +
∑

i≥kµx

ipi ≥ kµxProb[x ≥ kµx].

∴ Prob[x ≥ kµx] ≤
1

k
.

13

'

&

$

%

Fermat Test

1. If n is prime, then an−1 ≡ 1 (mod n) for all a not divided by n.

2. Hypothesis: n is not prime =⇒ at least half of nonzero residues

a can make an−1 6≡ 1 (mod n).

3. If it is true, we would have a polynomial Monte Carlo

algorithm for testing whether n is composite.

Unfortunately, this statement is false.

14

'

&

$

%

Square Roots Modulo a Prime

Consider x2 ≡ a (mod p) where p ≥ 3. Then exactly half of the

nonzero residues have square roots.

Proof.

• Consider the squares of 1, 2, 3, . . . , p − 1.

• They are exactly those numbers that have square roots.

• k and p − k collapse after squaring.

• However, x2 ≡ a has at most two roots, and in fact, either zero

or two distinct roots.

15

'

&

$

%

Lemma 11.3 If a
p−1

2 ≡ 1 (mod p), then x2 ≡ a has two roots.

Otherwise, a
p−1

2 ≡ −1 (mod p) and it has no roots.

Proof. Let r be a primitive root for p. Then each nonzero residue

a ≡ rk for some k ≥ 0.

1. k = 2j: a
p−1

2 ≡ (r2j)
p−1

2 = (rp−1)j ≡ 1, and the square roots

for a are rj and rj+ p−1

2 .

2. k = 2j + 1: a
p−1

2 = (r2j+1)
p−1

2 = rj(p−1)+ p−1

2 ≡ r
p−1

2 ≡ −1

(mod p), and it has no square roots.

16

'

&

$

%

Legendre Symbol

(
a

p

)
=






1 if a has square roots in p

0 if p divides a

−1 if a has no seuqre root in p

for prime numbers p > 2.

Theorem
(

a
p

)
= a

p−1

2 mod p.

Corollary
(

ab
p

)
=

(
a
p

) (
b
p

)
.

17

'

&

$

%

Gauss’s Lemma
(

a
p

)
= (−1)m where m = |{i : 1 ≤ i ≤ p−1

2 , qi mod p > p−1
2 }| and

p > 2.

Proof.

Consider

q, 2q, 3q, . . . ,
p − 1

2
· q

and

−
p − 1

2
, . . . ,−1, 0, 1, . . . ,

p − 1

2
.

Either k or −k (1 ≤ k ≤ p−1
2) can be mapped by one number qi,

but not both:

qi ≡ −qj (mod p) ⇒ q(i + j) ≡ 0 (mod p) ⇒ p|(i + j).

And no two numbers qi and qj can be the same:

qi ≡ qj (mod p) ⇒ p|i − j.

18

'

&

$

%

∏

1≤i≤
p−1

2

qi = (
p − 1

2
)! · q

p−1

2 ≡ (−1)m(
p − 1

2
)!

∴ (−1)m ≡ q
p−1

2 ≡

(
q

p

)
(mod p).

19

'

&

$

%

Legendre’s Law of Reciprocity
(

q

p

) (
p

q

)
= (−1)

p−1

2

q−1

2 if gcd(p, q) = 1.

Proof.

1.

1 + 2 + 3 + · · · +
p − 1

2
≡

p−1

2∑

i=1

(qi − p

⌊
qi

p

⌋
) + mp (mod 2).

∵ 0 ≤ a ≤ p−1
2 ⇒ p − a = a + p − 2a ≡ a + p ≡ a + 1 (mod 2).

2.

∴

p−1

2∑

i=1

i ≡ q

p−1

2∑

i=1

i − p
∑

i=1

p − 1

2

⌊
qi

p

⌋
+ mp (mod 2)

20

'

&

$

%

3.

∵ p ≡ q ≡ 1 (mod 2),

∴ m ≡

p−1

2∑

i=1

⌊
qi

p

⌋
(mod 2)

4. No grid lies inside (0, 0)—(p, q). Hence,

m + m′ ≡

p−1

2∑

i=1

⌊
qi

p

⌋
+

q−1

2∑

j=1

⌊
pj

q

⌋
≡

p − 1

2
·
q − 1

2
(mod 2).

5.

∴

(
q

p

) (
p

q

)
= (−1)m · (−1)m′

= (−1)
p−1

2

q−1

2 .

21

'

&

$

%

Jacob’s Symbol
(

M

N

)
=

(
M

p1

) (
M

p2

)
· · ·

(
M

pn

)

if N = p1p2 . . . pn where pi’s are odd primes (which may be the

same).

Lemma 11.6

1.
(

M1M2

N

)
=

(
M1

N

) (
M2

N

)

2.
(

M+N
N

)
=

(
M
N

)

3.
(

N
M

) (
M
N

)
= (−1)

M−1

2

N−1

2 if gcd(M, N) = 1 and M, N are odd.

Proof.

1.
(

M1M2

N

)
=

∏
i

(
M1M2

pi

)
=

∏
i

(
M1

p1

) ∏
j

(
M2

pj

)
=

(
M1

N

) (
M2

N

)

22

'

&

$

%

2.
(

M+N
N

)
=

∏
i

(
M+N

pi

)
=

∏
Mpi =

(
M
N

)

3.
(

M
N

) (
N
M

)
=

∏
i,j

(
qj

pi

)
·
∏

i,j

(
pi

qj

)
=

∏
i,j

[(
qj

pi

) (
pi

qj

)]

=
∏

i,j

(−1)
pi−1

2
·

qj−1

2 = (−1)
∑

i,j

pi−1

2

qj−1

2 .

And
∑

i,j
pi−1

2
qj−1

2 =
∑

i
pi−1

2

∑
j

qj−1
2 , and a−1

2 + b−1
2 ≡ ab−1

2

(mod 2).

∴

∑

j

qj − 1

2
≡

M − 1

2
(mod 2),

and
∑

i

pi − 1

2
≡

N − 1

2
(mod 2).

23

'

&

$

%

Lemma (
2

M

)
= (−1)

M2
−1

8

Proof.

Let M = q1 . . . qm. We first show that
(

2
p

)
= (−1)

p2
−1

8 for odd

primes p.

Consider 2, 2 × 2, . . . , 2i, . . . , 2 × p−1
2 for 1 ≤ i ≤ i ≤ p−1

2 .

2i > p−1
2 ⇒ i > p−1

4

∴ m =
p − 1

2
−

⌊
p − 1

4

⌋
=

p − 1

2
+

⌈
−

p − 1

4

⌉

=

⌈
p − 1

2
−

p − 1

4

⌉
=

⌈
p − 1

4

⌉
≡

p2 − 1

8
(mod 2).

24

'

&

$

%

Lemma Given two integers M and N with ` = lg MN ,

gcd(M, N) and
(

M
N

)
can be computed in O(`3) time.

Summary

1.
(

M
N

)
= 0 if gcd(M, N) 6= 1;

2.
(

M1M2

N

)
=

(
M1

N

) (
M2

N

)
;
(

M2

N

)
= 1;

3.
(

M
N

)
= −

(
N
M

)
iff M ≡ N ≡ 3 (mod 4);

(
M
N

)
=

(
N
M

)
otherwise;

4.
(

2
N

)
= −1 iff N ≡ 3 (mod 8) or N ≡ 5 (mod 8).

Example
(

163

511

)
= −

(
511

163

)
= −

(
22

163

)
= −

(
2

163

)(
11

163

)

25

'

&

$

%

=

(
11

163

)
= −

(
163

11

)
= −

(
9

11

)
= −

(
11

9

)
= −

(
2

9

)
= −1.

26

'

&

$

%

Lemma 11.8 If
(

M
N

)
≡ M

N−1

2 (mod N) for all M ∈ Φ(N), then

N is prime.

Proof.

Suppose N is composite.

1. N = p1p2 . . . pk, the product of distinct primes.

Let r be a number such that
(

r
p1

)
= −1,

r mod pj = 1 for 2 ≤ j ≤ k.

Then r
N−1

2 ≡
(

r
N

)
≡

∏(
r
pi

)
= −1 (mod N).

Hence r
N−1

2 ≡ 1 (mod p2), but r
N−1

2 ≡ 1
N−1

2 ≡ 1 (mod p2),

contradiction.

2. Let N = p2m for some p > 2 and m > 1.

Let r be a primitive root for p2. Then φ(p2) = p(p − 1)|N − 1.

Hence p|N − 1 and p|N , absurd.

27

'

&

$

%

Lemma 11.2 If N is an odd composite, then for at least half of

M ∈ Φ(N),
(

M
N

)
6≡ M

N−1

2 (mod N).

Proof.

By Lemma 11.8, there is at least one a ∈ Φ(N) such that
(a

N

)
6≡ a

N−1

2 (mod N).

Let B ⊆ Φ(N) such that
(

b
N

)
≡ b

N−1

2 (mod N) for all b ∈ B.

Let a · B be {ab : b ∈ B}.

Then (ab)
N−1

2 ≡ a
N−1

2 · b
N−1

2 6≡
(

a
N

) (
b
N

)
=

(
ab
N

)
(mod N).

The size of B and aB are the same.

Hence at least half of M ∈ Φ(N) make
(

M
N

)
6≡ M

N−1

2 (mod N).

28

'

&

$

%

Monte Carlo Algorithm for
Compositeness

Algorithm

Input N:

1. If 2|N , reply “Composite”.

2. Generate a random number M between 2 and N − 1.

If gcd(M, N) 6= 1, reply “Composite”.

3. If
(

M
N

)
6≡ M

N−1

2 , “Composite”.

4. Reply “Probably prime”.

This algorithm takes cubic time.

29

'

&

$

%

Randomized Complexity Classes

• RP: Randomized Polynomial time

• ZPP: Zero-error Probabilistic Polynomial time

• BPP: Bounded Probabilistic Polynomial time

30

'

&

$

%

RP

(Randomized Polynomial time)

Modelled as a non-deterministic Turing machine with

1. each computation on an input of length n terminates at p(n)

steps;

2. if x ∈ L, then at least half of the computations halts with

“yes”;

3. if x 6∈ L, then all computations halts with “no”.

31

'

&

$

%

Remark Condition 2 can be relaxed to Ω(1
p(n)).

Suppose the probability of false negative is at most 1 − η.

• Repeating the RP algorithm k times can reduce the probability

≤ (1 − η)k.

• Let k = dlog(1−η)
1
2e = d− 1

lg(1−η)e, which makes (1 − η)k ≤ 1
2 .

• lg(1 − η) ≈ − η
ln 2 ,

∴ k ≈ − 1
lg(1−η) ≈

ln 2
η

= O(p(n)) when η = Ω(1
p(n)).

32

'

&

$

%

ZPP

(Zero-error Probabilistic Polynomial time = RP∩coRP)

It meas that there are two RP algorithms, one for x ∈ L and the

other for x ∈ L̄.

33

'

&

$

%

BPP

(Bounded Probabilistic Polynomial time)





ProbR(x) = “yes” ≥ 3

4 if x ∈ L

ProbR(x) = “no” ≥ 3
4 if x 6∈ L

Remark The condition can be relaxed to




ProbR(x) = “yes” ≥ 1

2 + ε if x ∈ L

ProbR(x) = “no” ≥ 1
2 + ε if x 6∈ L

where ε = Ω(1
p(n)).

34

'

&

$

%

The Chernoff Bound

(Estimate the tail probability of independent Bernoulli trials.)

• x1, . . . , xn: independent random variables taking values 1 and 0

with prob. p and 1 − p, respectively.

• X =
∑n

i=1 xi

• 0 ≤ θ ≤ 1

then ProbX ≥ (1 + θ)pn ≤ exp(− θ2

3 pn).

Corollary Let p = 1
2 + ε for some ε > 0.

Then Prob
∑n

i=1 xi ≤
n
2 ≤ exp(− ε2n

6).

35

'

&

$

%

Random Sources

Do we have true random sources?

• Pseudo randomness

• Perfect random source

• Slightly random source

36

'

&

$

%

Derandomization

Make a randomized algorithm deterministic without losing much

efficiency.

37

