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coNP

• A problem is in coNP iff its complement is in NP.

• The complement of a decision problem is to interchange the

“yes”/“no” answer for each instance with respect to the

membership problem.

• Let A be a problem in NP. Then any positive instance of A has

a succinct certificate.

• Let B be a coNP problem. Then any negative instance of B

has a succinct disqualification.
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Validity

Given a Boolean formula represented in conjunctive-normal form, is

it true for all truth assignments?

This problem is coNP-complete.

That is, any coNP problem can reduce to Validity.

• F is valid iff ¬F is unsatisfiable.

• The complement of “¬F is unsatisfiable” is “¬F is satisfiable.”

It is indeed the SAT problem.

• Since SAT is NP-complete, any coNP problem can reduce to

coSAT.
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Proposition 10.1

If L is NP-complete, then its complement L̄ = Σ∗ − L is

coNP-complete.

Proof.

We have to show that any problem L′ in coNP can reduce to L̄.

• L̄′ is in NP.

• L̄′ can reduce to L. That is, x ∈ L̄′ iff R(x) ∈ L.

• The complement of L̄′ can reduce to L̄

since x 6∈ L̄′ iff R(x) ∈ L̄.

• That is, L̄′ can reduce to L̄ by the same reduction from L̄′ to L.
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Open Question

NP=coNP?

If P=NP, then NP=coNP. (NP=P=coP=coNP)

However, it is also possible that NP=coNP, even P6=NP.
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Proposition 10.2

If a coNP-complete problem is in NP, then NP=coNP.

Proof.

Let L be the coNP-complete problem that is in NP.

1. coNP⊆NP:

Since any L′ ∈coNP can reduce to L and L is in NP, we have

L′ is in NP.

2. NP⊆coNP:

For any L′′ ∈NP, asking “whether x 6∈ L′′” is in coNP. This

problem can reduce to L since L is coNP-complete. Thus,

asking whether x ∈ L′′ can reduce to the complement of L,

which is in coNP.
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Example 10.2

PRIMES: Determines whether an integer N given in binary is a

prime number.

It is easy to see that PRIMES is in coNP since COMPOSITE is in

NP.
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Notations

• x|y if there is a whole number z with y = xz.

• x - y iff it is not the case for x|y.

• a ≡ b (mod n) iff n|(a − b).

(9 ≡ 14 (mod 5))

• a ≡ a (mod n). (reflexive)

• a ≡ b (mod n) implies b ≡ a (mod n) (symmetric)

• a ≡ b and b ≡ c implies a ≡ c (mod n) (transitive)

• If a ≡ b (mod n) and c ≡ d (mod n), then

1. a + c ≡ b + d (mod n)

2. a − c ≡ b − d (mod n)

3. a · c ≡ b · d (mod n)

• If a ≡ b (mod n), then ac ≡ bc (mod n) for any b.
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• If ac ≡ bc (mod n) and c and n are relatively prime, then we

can conclude that a ≡ b (mod n). (cancellation rule)
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Historic Events

• Euclid: There are infinite primes.

• (1974) Pratt: PRIMES ∈ NP

⇒ PRIMES ∈ NP ∩ coNP

• (1975) Miller: deterministic polynomial time based on

Extended Riemann’s Hypothesis

(ERH: The first quadratic nonresidue mod p of a number is

always less than 3(ln p)2/2, from MathWorld.)

• (1977) Solovay, Strassen

(1980) Rabin: Monte Carlo test for compositeness

⇒ PRIMES ∈ coRP
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• (1983) Adleman, Pomerance, Rumely: (lg n)O(lg lg lg n)

deterministic algorithm

• (1987) Adleman, Huang: Monte Carlo test for PRIMES

⇒ PRIMES ∈ RP ∩ coRP = ZPP

• (2002) Agrawal, Kayal, Saxena: O∼(lg7.5 n) algorithm

(Note: O∼(t(n)) is O(t(n)) · poly(log t(n)))
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Theorem 10.1

A number p > 2 is prime if and only if there is a number 1 < r < p

such that rp−1 ≡ 1 (mod p), and r
p−1

q
6≡1 (mod p) for all prime

divisors q of p − 1.

If fact, we can claim that p > 2 is prime iff there is a number

1 < r < p such that rp−1 ≡ 1 (mod p), and r
p−1

m 6≡ 1 (mod p) for

all proper divisors m of p − 1.
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Pratt’s Theorem

PRIMES is in NP∩coNP.

1. We know that PRIMES is in coNP.

2. We will show that PRIMES is in NP.

• 13 is prime: by setting r = 2

212 = (24)3 = 163 ≡ 33 = 27 ≡ 1 (mod 13).

13 − 1 = 12 ⇒ The prime factors are 2 and 3.

2
13−1

2 = 26 = 64 ≡ −1 6≡ 1 (mod 13).

2
13−1

3 = 24 = 16 ≡ 3 6≡ 1 (mod 13).

∴ 13 is prime.

Our certificate for 13 being prime is (2; 2, 3).
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• 17 is prime: by setting r = 3

316 = (34)4 = 814 ≡ (−4)4 = 162 ≡ 1 (mod 17).

17 − 1 = 16 ⇒ The prime factor is only 2.

3
17−1

2 = 38 ≡ 16 6≡ 1 (mod 17).

∴ 17 is prime.

Our certificate for 13 being prime is (3; 2).
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• 91 is not prime:

However, by setting r = 10 we have

1090 = 10045 ≡ 945 = (93)15 ≡ 1 (mod 91);

91 − 1 = 90 ⇒ 2, 45;

10
91−1

2 = 1045 = 100015 ≡ (−1)15 ≡ −1 (mod 91);

10
91−1

45 = 102 ≡ 9 (mod 91).

However, 91 is not prime.

91 − 1 = 90 ⇒ 2, 3, 5

10
91−1

3 = 1030 ≡ 1 (mod 91)!

14



'

&

$

%

3. How to test whether an ≡ 1 (mod p)?

By the Horner’s rule.

90 = 64 + 16 + 8 + 2 = (1011010)2

Hence if we can compute a0, a1, a2, a4, a8, . . . , a64, we can

compute a90 mod p.

We can compute a · b (mod p) in time O(`2) where ` is the

length of p in binary number.

Hence, we can test whether an ≡ 1 (mod p) in time O(`3).
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4. The certificate for p being prime is of the form:

C(p) = (r; q1, C(q1), . . . , qk, C(qk)).

For example,

C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1)))).

We need to test

(a) rp−1 ≡ 1 (mod p)

(b) q1, q2, . . . , qk are the only prime divisors of p − 1.

(c) r
p−1

qi 6≡ 1 (mod p) for all possible i.

(d) qi’s are prime.

In fact, we can show that C(p)is in polynomial length with

respect to the length of the binary representation of p.
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5. We also have to bound the time complexity for verifying the

certificate.

As a result, one can bound the time in O(`5) where ` = blg pc.

Hence PRIMES is in NP.
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In order to prove Theorem 10.1, we need more knowledge on the

number theory.

Theorem 10.1 A number p > 2 is prime if and only if there is a

number 1 < r < p such that rp−1 ≡ q (mod p), and r
p−1

q 6≡ 1

(mod p) for all prime divisors q of p − 1.
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Notations

1. p, a prime

2. m divides n if n = mk. (m|n)

3. (m, n), the greatest common divisor of m and n

4. Zn = {0, 1, 2, . . . , n − 1}, the residues modulo n

5. Φ(n) = {m : 1 ≤ m ≤ n, (m, n) = 1}

6. φ(n) = |Φ(n)| (Euler’s totient function)

7. Z∗
n = {m : 1 ≤ m < n, (m, n) = 1} ∪ {0}, the reduced residues

modulo n

Example Φ(12) = {1, 5, 7, 11}, Φ(11) = {1, 2, 3, 4, . . . , 10}.

φ(1) = 1.
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Lemma 10.1 φ(n) = n
∏

p|n(1 − 1
p ).

Corollary If (m, n) = 1, then φ(m · n) = φ(m) · φ(n).

(multiplicative)

Example If n = pq where p and q are primes. Then

φ(n) = n − p − q + 1 = n(1 −
1

p
)(1 −

1

q
).

Proof.

By the inclusive-exclusive principle.

Let Ap be the set of numbers between 1, . . . , n that are divisible by

prime p. (Ap = {x : 1 ≤ x ≤ n&p|x})

Then Φ(n) = Āp1
∩ Āp2

∩ . . . ∩ Āp`
= � − (Ap1

∪ Ap2
∪ · · · ∪ Ap`

).

#(Ap1
∪ Ap2

∪ · · · ∪ Ap`
) = · · ·

20



'

&

$

%

The Chinese Remainder Theorem

Let n = p1 · · · pk.

φ(n) = (p1 − 1)(p2 − 1) · · · (pk − 1) reveals a more important fact.

There is a one-one correspondence between r and (r1, . . . , rk) where

r ∈ Φ(n) and ri ∈ Φ(Pi) for all i.

In fact, ri ≡ r (mod pi) and r ∈ Φ(n) 7→ ri ∈ Φ(pi), a bijection.
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Lemma 10.2
∑

m|n φ(m) = n.

Take n = 12 for illustration: m = 1, 2, 3, 4, 6, 12.

φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 12.

Proof.

For the case when n = 12.
1
12 , 2

12 , 3
12 , 4

12 , 5
12 , 6

12 , 7
12 , 8

12 , 9
12 , 10

12 , 11
12 , 12

12
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Fermat’s Theorem

Lemma 10.3 ap−1 ≡ 1 (mod p) for p - a.

aφ(n) ≡ 1 (mod n) if (a, n) = 1 (Euler’s Theorem)

Proof.

1, 2, 3, . . . , p − 1

{a, 2a, 3a, . . . , a(p − 1)} = {1, 2, 3, . . . , p − 1} since ax ≡ ay implies

x ≡ y (mod p).

(p − 1)! ≡ ap−1 · (p − 1)!

∴ ap−1 ≡ 1 (mod p).
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Number of Roots for Polynomials

Lemma 10.4 Any polynomial of degree k that is not identically

zero has at most k distinct roots modulo p.

Proof.

Let p(x) be a polynomial of degree k. If xk is a root for p(x), then

there is q(x) of degree k − 1 such that

p(x) ≡ (x − xk)q(x) (mod p).

Any x that is not a root for q(x) cannot make q(x) ≡ 0. Therefore

there are at most (k − 1) + 1 = k roots for p(x) by the induction.
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Exponent for a Number m

It is the smallest k such that mk ≡ 1 (mod p).

• Such k always exists as long as (p, m) = 1 since ap−1 ≡ 1

(mod p).

• k|(p − 1).

• If mk1 ≡ 1 (mod p) and mk2 ≡ 1 (mod p), then m|k1 and m|k2.
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The Primitive Roots for Zp

A number r such that r1, r2, . . . , rp−1 generates 1, 2, . . . , p − 1.

There always exists a primitive root for any prime.
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Let us fix a p.

Define R(k) to be the set of elements in Zp with exponents exactly

equal to k.

Lemma |R(k)| ≤ φ(k).

Proof.

if R(k) 6= ∅, there exists s such that

s1, . . . , sk−1 6≡ 1 and sk ≡ 1 (mod p).

These are all k distinct roots for xk ≡ 1 (mod p).

And st ∈ R(k) iff (t, k) = 1, since otherwise (st)k/d ≡ 1 for some

d|(k, t). There are exactly φ(k) such t.

If R(k) = ∅, the inequality certainly holds.
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Lemma

|R(k)| = φ(k) if k|(p − 1).

Proof.

1. Since ap−1 ≡ 1 (mod )p, each a ∈ Φ(p) must belong to some

R(k) for some k|(p − 1).

2. Thus,
∑

k|(p−1) R(k) = p − 1.

3.
∑

k|(p−1) R(k) ≤
∑

k|(p−1) φ(k) = p − 1.

4. Hence, all inequalities are in fact equalities.
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Lemma There is an r such that r is a primitive root for Zp.

(r1, r2, . . . , rp−1 generates 1, 2, . . . , p − 1)

Proof.

1. There is an r such that r ∈ R(p − 1).

2. r1, r2, . . . , rp−2 6≡ 1 and rp−1 ≡ 1 (mod p).

3. r1, r2, . . . , rp−1 are all distinct.

4. r is a primitive root.
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Theorem 10.1 A number p > 2 is prime if and only if there is a

number 1 < r < p such that rp−1 ≡ 1 (mod p), and r
p−1

q
6≡1 (mod p)

for all prime divisors q of p − 1.

Proof.

If p > 2 is a prime, let r be its primitive root and all conditions on

the only-if part are satisfied.

Conversely, assume p is not a prime.

1. Any r satisfies rφ(p) ≡ 1 (mod p). (Euler’s Theorem)

2. If rp−1 ≡ 1 (mod p), then the exponent of r must divide φ(p)

and p − 1, and φ(p) 6= p − 1.

3. There exists q > 1 such that p−1
q is the exponent of r.

4. Thus, r
p−1

q
≡1 (mod p) for some q > 1. (Contradiction)
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The Primitive Roots for Zm

We can extend the idea of primitive roots to general m (which may

not be a prime). It is a number r such that r1, r2, . . . , rφ(m)

(mod m) generates Φ(m).

Theorem There is a primitive root for m if and only if

m = 2, 4, p`, 2p` where p is an odd prime.
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