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coNP \

A problem is in coNP iff its complement is in NP.

The complement of a decision problem is to interchange the
“yes” /“no” answer for each instance with respect to the

membership problem.

Let A be a problem in NP. Then any positive instance of A has
a succinct certificate.

Let B be a coNP problem. Then any negative instance of B
has a succinct disqualification.




4 Validity N

Given a Boolean formula represented in conjunctive-normal form, is

it true for all truth assignments?

This problem is coNP-complete.
That is, any coNP problem can reduce to Validity.

e [ is valid iff —F is unsatisfiable.

e The complement of “—F' is unsatisfiable” is “—F is satisfiable.”
It is indeed the SAT problem.

e Since SAT is NP-complete, any coNP problem can reduce to
coSAT.
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/ Proposition 10.1 \

If L is NP-complete, then its complement L = ¥* — L is
coNP-complete.

Proof.
We have to show that any problem L’ in coNP can reduce to L.

e I’ isin NP.
e L' can reduce to L. That is, z € L' iff R(z) € L.

e The complement of L’ can reduce to L
since ¢ ¢ L' iff R(z) € L.

e That is, L’ can reduce to L by the same reduction from L’ to L.
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/ Open Question
NP=coNP?

If P=NP, then NP=coNP. (NP=P=coP=coNP)
However, it is also possible that NP=coNP, even P£NP.




/ Proposition 10.2 \

If a coNP-complete problem is in NP, then NP=colNP.

Proof.
Let L be the coNP-complete problem that is in NP.

1. coNPCNP:
Since any L’ €coNP can reduce to L and L is in NP, we have
L’ is in NP.

2. NPCcoNP:
For any L” €NP, asking “whether x ¢ L"”” is in coNP. This
problem can reduce to L since L is coNP-complete. Thus,
asking whether x € L” can reduce to the complement of L,

which is in coNP.




/ Example 10.2 \

PRIMES: Determines whether an integer N given in binary is a

prime number.

It is easy to see that PRIMES is in coNP since COMPOSITE is in
NP.




/ Notations

e z|y if there is a whole number z with y = zz.

e x 1y iff it is not the case for x|y.
e o =b (mod n) iff n|(a —b).
(9 =14 (mod 5))
e a =a (mod n). (reflexive)
e ¢ =b (mod n) implies b = a (mod n) (symmetric)
e a =band b= cimplies a = ¢ (mod n) (transitive)
e If a =b (mod n) and ¢ =d (mod n), then
l.a+c=b+d (mod n)
2. a—c=b—d (mod n)
3. a-c=b-d (mod n)

\o If a =b (mod n), then ac = be (mod n) for any b.
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/ e If ac = bc (mod n) and ¢ and n are relatively prime, then we \

can conclude that a = b (mod n). (cancellation rule)




Historic Events
Fuclid: There are infinite primes.

(1974) Pratt: PRIMES € NP
— PRIMES € NP N coNP

(1975) Miller: deterministic polynomial time based on
Extended Riemann’s Hypothesis

(ERH: The first quadratic nonresidue mod p of a number is
always less than 3(Inp)?/2, from MathWorld.)

(1977) Solovay, Strassen
(1980) Rabin: Monte Carlo test for compositeness
= PRIMES € coRP




/ e (1983) Adleman, Pomerance, Rumely: (lg n)O(lg lglgn) \

deterministic algorithm

e (1987) Adleman, Huang: Monte Carlo test for PRIMES
= PRIMES € RP N coRP = ZPP

e (2002) Agrawal, Kayal, Saxena: O~ (1g"° n) algorithm
(Note: O~ (t(n)) is O(t(n)) - poly(logt(n)))
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/ Theorem 10.1 \

A number p > 2 is prime if and only if there is a number 1 < r < p
—1
such that 7?71 =1 (mod p), and pia 71 (modp) o A1l prime

divisors q of p — 1.

If fact, we can claim that p > 2 is prime iff there is a number
1 <r < psuch that ¥»~! =1 (mod p), and rhm 21 (mod p) for

all proper divisors m of p — 1.
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/ Pratt’s Theorem

PRIMES is in NPNcoNP.
1. We know that PRIMES is in coNP.

2. We will show that PRIMES is in NP.

e 13 is prime: by setting r = 2
212 = (213 =162 =32 =27 =1 (mod 13).
13 — 1 = 12 = The prime factors are 2 and 3.

275 =26 =64=—-1%#1 (mod 13).
13—1

275 =24=16=3#1 (mod 13).

. 13 is prime.

Our certificate for 13 being prime is (2; 2, 3).
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/ e 17 is prime: by setting r = 3 \

316 = (31)* =81* = (—4)* =162 =1 (mod 17).
17 —1 =16 = The prime factor is only 2.
17—1

372 =3%=16#1 (mod 17).

. 17 is prime.

Our certificate for 13 being prime is (3;2).
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/ e 91 is not prime:

However, by setting » = 10 we have
109 = 100%° = 9%° = (9%)15 = 1 (mod 91);
91 — 1 =90 = 2,45;

1072 = 10% = 1000'® = (—1)1® = —1 (mod 91);
91—1

1075 =102 =9 (mod 91).
However, 91 is not prime.
91 -1=90=2,3,5

91—-1

1075 =103 =1 (mod 91)!
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/3. How to test whether a” =1 (mod p)?
By the Horner’s rule.

90 = 64 + 16 + 8 + 2 = (1011010)5

Hence if we can compute a,a', a?,a*, a8, ..., a%, we can

O mod p.

compute a’
We can compute a - b (mod p) in time O(¢?) where / is the
length of p in binary number.

Hence, we can test whether ¢” =1 (mod p) in time O(£3).
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/4. The certificate for p being prime is of the form: \

C(p) = (1;q1,C(q1), - - -, Clar)).-

For example,
C(67) = (2:2,(1),3,(2;2,(1)),11,(8;2,(1),5,(3;2,(1)))).

We need to test
a) rP71 =1 (mod p)

(
(b) ¢1,q2, ..., qr are the only prime divisors of p — 1.

p_

() '

1 % 1 (mod p) for all possible .
(d) ¢;’s are prime.

In fact, we can show that C(p)is in polynomial length with
respect to the length of the binary representation of p.
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/5. We also have to bound the time complexity for verifying the \
certificate.

As a result, one can bound the time in O(¢°) where ¢ = |lgp].
Hence PRIMES is in NP.
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In order to prove Theorem 10.1, we need more knowledge on the

number theory.

Theorem 10.1 A number p > 2 is prime if and only if there is a
-1

number 1 < r < p such that r»~! = ¢ (mod p), and ra =1
(mod p) for all prime divisors g of p — 1.
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/ Notations

1. p, a prime

m divides n if n = mk. (m|n)

(m,n), the greatest common divisor of m and n
Zym =40,1,2,...,n — 1}, the residues modulo n
d(n)={m:1<m<n,(m,n) =1}

d(n) = |P(n)| (Euler’s totient function)

N s oA W

2 ={m:1<m<n,(m,n)=1}U{0}, the reduced residues
modulo n

Example ®(12) = {1,5,7,11}, ®(11) = {1,2,3,4,...,10}.
¢(1) = 1.

-
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4 N

Lemma 10.1 ¢(n) =n]],,(1 - %)

Corollary If (m,n) =1, then ¢(m - n) = ¢(m) - p(n).
(multiplicative)

Example If n = pqg where p and ¢ are primes. Then

bn)=n—p—q+1=n-=)(1->)
p q
Proof.
By the inclusive-exclusive principle.
Let A, be the set of numbers between 1,...,n that are divisible by
prime p. (A, ={z: 1 <z < n&plr})
Then ®(n) = A,, NA,,N...NA,, =0-(A,, UA,, U---UA,,).

Q&(AmUAsz'”UAm):”' /
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/ The Chinese Remainder Theorem \

Let n =py - ps.

¢(n) = (p1 —1)(p2 — 1) - (pr — 1) reveals a more important fact.
There is a one-one correspondence between r and (ry,...,7) where
r € ®(n) and r; € ®(P;) for all 4.

In fact, r; = r (mod p;) and r € ®(n) — r; € ®(p;), a bijection.
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Lemma 10.2 . ¢(m)=n.

Take n = 12 for illustration: m =1, 2,3,4,6, 12.
6(1) + 6(2) + 6(3) + 6(4) + 6(6) + 6(12) = 12.

Proof.

For the case when n = 12.
1 2 3 4 5 6 7 8 9 10 11 12

127127 127 122 127 127 127 127 127 127 127 12
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//7 Fermat’s Theorem ‘\\

Lemma 10.3 a?~! =1 (mod p) for p1a.
a®™ =1 (mod n) if (a,n) = 1 (Euler’s Theorem)

Proof.

1,2,3,....p—1

{a,2a,3a,...,a(p—1)} ={1,2,3,...,p — 1} since ax = ay implies
r =y (mod p).

(p—N=a""(p-1)

s.aP™l =1 (mod p).

- /
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/ Number of Roots for Polynomials \

Lemma 10.4 Any polynomial of degree k that is not identically

zero has at most k distinct roots modulo p.

Proof.
Let p(z) be a polynomial of degree k. If x; is a root for p(x), then

there is q(x) of degree k — 1 such that

p(z) = (z —xp)q(z) (mod p).

Any x that is not a root for ¢(x) cannot make ¢(x) = 0. Therefore
there are at most (k — 1) + 1 = k roots for p(x) by the induction.

. /
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It is the smallest k such that mF =

e Such k always exists as long as

(mod p).

o kl(p—1).

o If m* =1 (mod p) and m*2 =

/ Exponent for a Number m

(mod p).

(p,m) = 1 since aP~*

1 (mod p), then m|k;

~

Il
—_

and m|ks.
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/ The Primitive Roots for Z, \

2

A number r such that 7!, r%,..., 7P~ generates 1,2,...,p — 1.

There always exists a primitive root for any prime.
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4 N

Let us fix a p.
Define R(k) to be the set of elements in Z, with exponents exactly
equal to k.

Lemma |R(k)| < ¢(k).

Proof.
if R(k) # 0, there exists s such that

st,...,s" 1 #£1and s* = (mod p).

These are all k distinct roots for z¥ =1 (mod p).

And st € R(k) iff (t, k) = 1, since otherwise (s)*/¢ =1 for some
d|(k,t). There are exactly ¢(k) such t¢.

If R(k) =0, the inequality certainly holds.

. /
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Lemma
[R(k)| = ¢(k) it k[(p —1).
Proof.

1. Since a?~!' =1 (mod )p, each a € ®(p) must belong to some
R(k) for some k|(p — 1).

3. Zkl(p—l) R(k) < Zkl(p—l) ¢(k) =p—1.

4. Hence, all inequalities are in fact equalities.
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Lemma There is an r such that r is a primitive root for Z,.

(rt,r?,..., 7P~ generates 1,2,...,p — 1)

Proof.

1. There is an r such that r € R(p — 1).

2. rtr2, ... ,rP72 £ 1 and rP71 =1 (mod p).

—1

3. ri.r?, ..., P~ are all distinct.

4. r is a primitive root.

~
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4 N

Theorem 10.1 A number p > 2 is prime if and only if there is a

number 1 < r < p such that r»~! =1 (mod p), and P #L (mod p)

for all prime divisors g of p — 1.

Proof.
If p > 2 is a prime, let r be its primitive root and all conditions on
the only-if part are satisfied.

Conversely, assume p is not a prime.
1. Any r satisfies 7®P) =1 (mod p). (Euler’s Theorem)

2. If rP~1 =1 (mod p), then the exponent of r must divide ¢(p)
and p — 1, and ¢(p) #p — 1.

3. There exists ¢ > 1 such that pq;l is the exponent of r.

p—1

\4. Thus, r @ =1 M°4P) for some ¢ > 1. (Contradiction) /
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/ The Primitive Roots for Z,, \

We can extend the idea of primitive roots to general m (which may
not be a prime). It is a number 7 such that !, 72,... r®(m)

9

(mod m) generates ®(m).

Theorem There is a primitive root for m if and only if

m = 2,4, p", 2p° where p is an odd prime.
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