
Theory of Computation

Chapter 9: NP-complete Problems

Guan-Shieng Huang

May 12, 2003
Mar. 1, 2009

0-0

'

&

$

%

NP-completeness Problems

NP: the class of languages decided by nondeterministic Turing

machine in polynomial time

NP-completeness:

Cook’s theorem: SAT is NP-complete.

Certificate of TM:

Hard to find an answer if there is one, but easy to verify.

SAT — a satisfying truth assignment

Hamilton Path — a Hamilton path

1

'

&

$

%

Variants of Satisfiability

• k-SAT

• 3-SAT

• 2-SAT

• MAX 2SAT

• NAESAT

2

'

&

$

%

k-SAT: Each clause has at most k literals.

(`1 ∨ `2 ∨ · · · ∨ `t, t ≤ k)

Proposition 9.2 3-SAT is NP-complete.

For any clause C = `1 ∨ `2 ∨ · · · ∨ `t, we introduce a new variable x

and split C into

C1 = `1 ∨ `2 ∨ · · · ∨ `t−2 ∨ x,

C2 = ¬x ∨ `t−1 ∨ `t.

Each time we obtain a clause with 3 literals. Then F ∧ C is

satisfiable iff F ∧ C1 ∧ C2 is satisfiable

3

'

&

$

%

Proposition 9.3 3-SAT remains NP-complete if each variable is

restricted to appear at most three times, and each literal at most

twice.

Suppose a variable x appears k times. Replace the ith x by new

variable xi for 1 ≤ i ≤ k, and add

(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1)

to the expression.

(x1 ⇒ x2) ∧ (x2 ⇒ x3) ∧ · · · ∧ (xk ⇒ x1)

∴ xi equals xj for 1 ≤ i, j ≤ k.

4

'

&

$

%

Theorem 2-SAT is in NL.

Corollary 2-SAT is in P.

5

'

&

$

%

MAX 2SAT: Find a truth assignment that satisfies the most

clauses where each clause contains at most two literals.

Theorem 9.2 MAX 2SAT is NP-complete.

Reduce 3-SAT to MAX 2SAT.

For any clause x ∨ y ∨ z where x, y, z are literals, translate it into

x, y, z, w,

¬x ∨ ¬y,¬y ∨ ¬z,¬z ∨ ¬x,

x ∨ ¬w, y ∨ ¬w, z ∨ ¬w.

Then x ∨ y ∨ z is satisfied iff 7 clauses are satisfied.

6

'

&

$

%

Let F be an instance of 3-SAT with m clauses. Then F is

satisfiable iff 7m clauses can be satisfied in R(F).

7

'

&

$

%

NAESAT: A clause is satisfied iff not all literals are true, and not

all false. (Eg, x ∨ ¬y ∨ z, not {x=1, y=0, z=1} {x=0. y=1. z=0})

Theorem 9.3 NAESAT is NP-complete.

1. The reduction from Circuit SAT to SAT;

2. Add additional new variable z to all clauses with fewer than 3

literals.

8

'

&

$

%

Independent set (in a graph):

G = (V, E), I ⊆ V . I is an independent set of G iff for all i, j ∈ I,

(i, j) 6∈ E.

INDEPENDENT SET: Given a graph G and a number k, is

there an independent set I of G with |I| ≥ k?

9

'

&

$

%

Theorem 9.4 Independent Set is NP-complete. Reduce

3-SAT to it. If there are m clauses, let k = m.

1. Each clause corresponds to one triangle.

2. Complement literals are joined by an arc.

Corollary 4-Degree Independent Set is NP-complete.

(Still NP-complete when each variable appears at most 3 times and

each literal appears at most twice.)

10

'

&

$

%

Clique: G = (V, E), C ⊆ V . C is a clique of G iff for all i, j ∈ C,

(i, j) ∈ E.

Corollary Clique is NP-complete.

11

'

&

$

%

Node Cover: G = (V, E), N ⊆ V is a node cover iff for every

edge (i, j) ∈ E, either i ∈ N or j ∈ N .

Corollary Node Cover is NP-complete.

12

'

&

$

%

Cut: G = (V, E), ∅ 6= S & V , then (S, V − S) is a cut. The size

of a cut is the number of edges between S and V − S.

13

'

&

$

%

Theorem 9.5 Max Cut is NP-complete. Reduce NAESAT to

it.

1. F = {C1, C2, . . . , Cm} clauses, each contains three literals. The

variables are x1, x2, . . . , xn.

⇒ G has 2n nodes, namely, x1, . . . , xn,¬x1, . . . ,¬xn.

2. (a) For a clause Ci = α ∨ β ∨ γ, add edges (α, β), (α, γ), (β, γ)

into G. For a clause Ci = α ∨ α ∨ β, add (α, β), (α, β) into

G.

(b) For any variable xi, let ni be the number of occurrences of

either xi or ¬xi (i.e., their sums). Add ni edges between xi

and ¬xi. (3m edges are added in total.)

3. If F is NAESAT, let S be the set of literals that is true. Then

(S, V − S) is a cut of size

2m + 3m = 5m.

14

'

&

$

%

4. If G has a cut S of size 5m or more, without loss of generality,

we assume xi and ¬xi are in different side. There are exactly

3m edges introduced in 2.(b). There are at most 2m edges

introduced in 2.(a), which equals to 2m if and only if all clauses

are NAESAT.

15

'

&

$

%

Max Bisection: A special Max Cut with |S| = |V − S|.

Lemma 9.1 Max Bisection is NP-complete.

Indeed, the proof of Theorem 9.5 is a one. Or, simply add |V |

isolated nodes into G.

16

'

&

$

%

Bisection Width: Separate the nodes into two equal parts with

minimum cut.

Remark It is a generalization of Min Cut, which is in P. (Max

Flow=Min Cut).

Theorem 9.6 Bisection Width is NP-complete.

Let G = (V, E) where |V | = 2n, then G has a bisection of size k if

and only if the complement of G has a bisection of size n2 − k.

17

'

&

$

%

Hamilton Path: Given an undirected graph G, does it have a

Hamilton path?

Theorem Hamilton Path is NP-complete.

Reduce 3-SAT to it.

1. choice gadget

2. consistency gadget

18

'

&

$

%
19

'

&

$

%

3. constraint gadget

20

'

&

$

%

4. Reduction from 3-SAT to Hamilton Path:

(a) Start from node 1, end with node 2.

(b) All � nodes are connedted in a big clique.

21

'

&

$

%

Corollary TSP(D) is NP-complete.

Reduce Hamilton Path to it.

d(i, j) =







1 if (i, j) is an edge in G;

2 otherwise.

We also add an extra node that connects to other nodes with

distance 1.

G has an HP iff R(G) has an HC of length n + 1.

22

'

&

$

%

k-coloring of a graph: Color a graph with at most k colors such

that no two adjacent nodes have the same color.

Theorem 9.8 3-Coloring is NP-complete.

23

'

&

$

%

Reduce NAESAT to it.

1. choice gadget: upper part

2. constraint gadget: lower part

24

'

&

$

%

Tripartite Matching: Given T ⊆ B × G × H,

|B| = |G| = |H| = n, try to find n triples in T s.t. no two of which

have a component in common.

(B: boys, G: girls, H: homes)

Theorem 9.8 Tripartite Matching is NP-complete.

25

'

&

$

%
Reduce 3-SAT to it.

1. For each variable xi, we construct a choice-consistency gadget.

(a) Let k be the maximum of the occurrences of x and ¬x (i.e.,

26

'

&

$

%

max{occ(xi), occ(¬xi)}).

(b) There are k boys, k girls, 2k homes in this gadget.

2. For each clause (α ∨ β ∨ γ), construct a new added triple

(b, g, h) where h is either α, β, or γ, not joined by another triple

in this step.

3. Suppose there are m clauses. Since occ(xi) + occ(¬xi) ≤ 2ki,

we have 3m ≤ |H|. Hence, there are at least 3m homes. The

number of boys is |H|
2

+ m ≤ |H|. Introduce ` more boys &

27

'

&

$

%

girls such that |B| = |G| = |H|. For each of the ` boys and

girls, add |H| triples that connect to all homes.

28

'

&

$

%

Set Covering: F = {S1, . . . , Sm} of subsets of a finite set U .

Find a minimum sets in F whose union is U .

Set Packing: F = {S1, . . . , Sm} of subsets of a finite set U . Find

a maximum sets in F that are pairwise disjoint.

Exact Cover by 3-Set: F = {S1, . . . , Sn} of subsets of a finite

set U , and |Si| = 3, |U | = 3m for some m ≤ n. Find m sets in F

that are disjoint and have U as their union.

All of these problems are generalization of Tripartite

Matching. Hence, they are all NP-complete.

29

'

&

$

%
30

'

&

$

%

Integer Programming: Given a system of linear inequalities

with integer coefficients, does it have an integer solution?

Theorem Integer Programming is NP-complete.

Reduce Set Covering to it. Let F = {S1, . . . , Sn} be subsets of

U . x = (x1 x2 · · ·xn)t. xi =







1 if Si is in the cover;

0 otherwise.

A = (ai,j), ai,j = 1 iff the ith element in U belongs to Sj .

⇒















Ax ≥ ~1;
∑n

i=1
xi ≤ B, where B is the budget;

0 ≤ xi ≤ 1.

31

'

&

$

%

Knapsack: {1, 2, . . . , n}, n items. Item i has value vi > 0 and

weight wi > 0. Try to find a subset S ⊆ {1, . . . , n} such that
∑

i∈S wi ≤ W and
∑

i∈S vi ≥ K for some W and K.

Theorem 9.10 Knapsack is NP-complete.

32

'

&

$

%

Reduce Exact Cover By 3-Set to it. {S1, S2, . . . , Sn}, an

instance of Exact Cover By 3-Set, U = {1, 2, . . . , 3m}.

Let vi = wi =
∑

j∈Si
(n + 1)3m−j and W = K =

∑3m−1

j=0
(n + 1)j .

(Never carry.)

33

'

&

$

%

Proposition 9.4 Any instance of Knapsack can be solved in

O(nW) time, where n is the number of items and W is the weight

limit.

We can solve this by dynamic programming.

V (w, i): the largest value attainable by selecting some among the

first i items so that the total weight is no more than w.















V (w, i + 1) = max{V (w, i), [w ≥ wi+1](vi+1 + V (w − wi+1, i))}

for i ≥ 0 and 0 ≤ w ≤ W ;

V (w, 0) = 0 for 0 ≤ w ≤ W.

If V (W, n) ≥ K, then answer “yes.”

34

