Theory of Computation
 Chapter 9: NP-complete Problems

Guan-Shieng Huang
May 12, 2003
Mar. 1, 2009

NP-completeness Problems

NP: the class of languages decided by nondeterministic Turing machine in polynomial time

NP-completeness:
Cook's theorem: SAT is NP-complete.

Certificate of TM:
Hard to find an answer if there is one, but easy to verify.
SAT - a satisfying truth assignment
Hamilton Path - a Hamilton path

Variants of Satisfiability

- k-SAT
- 3-SAT
- 2-SAT
- MAX 2SAT
- NAESAT
k-SAT: Each clause has at most k literals.

$$
\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{t}, t \leq k\right)
$$

Proposition 9.2 3-SAT is NP-complete.
For any clause $C=\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{t}$, we introduce a new variable x and split C into

$$
\begin{gathered}
C_{1}=\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{t-2} \vee x \\
C_{2}=\neg x \vee \ell_{t-1} \vee \ell_{t}
\end{gathered}
$$

Each time we obtain a clause with 3 literals. Then $F \wedge C$ is satisfiable iff $F \wedge C_{1} \wedge C_{2}$ is satisfiable

Proposition 9.3 3-SAT remains NP-complete if each variable is restricted to appear at most three times, and each literal at most twice.

Suppose a variable x appears k times. Replace the i th x by new variable x_{i} for $1 \leq i \leq k$, and add

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \cdots \wedge\left(\neg x_{k} \vee x_{1}\right)
$$

to the expression.

$$
\left(x_{1} \Rightarrow x_{2}\right) \wedge\left(x_{2} \Rightarrow x_{3}\right) \wedge \cdots \wedge\left(x_{k} \Rightarrow x_{1}\right)
$$

$\therefore x_{i}$ equals x_{j} for $1 \leq i, j \leq k$.

Theorem 2-SAT is in NL.

Corollary 2-SAT is in P .

MAX 2SAT: Find a truth assignment that satisfies the most clauses where each clause contains at most two literals.

Theorem 9.2 MAX 2SAT is NP-complete.
Reduce 3-SAT to MAX 2SAT.
For any clause $x \vee y \vee z$ where x, y, z are literals, translate it into

$$
\begin{array}{r}
x, y, z, w, \\
\neg x \vee \neg y, \neg y \vee \neg z, \neg z \vee \neg x, \\
x \vee \neg w, y \vee \neg w, z \vee \neg w .
\end{array}
$$

Then $x \vee y \vee z$ is satisfied iff 7 clauses are satisfied.

Let F be an instance of 3 -SAT with m clauses. Then F is satisfiable iff $7 m$ clauses can be satisfied in $R(F)$.

NAESAT: A clause is satisfied iff not all literals are true, and not all false. (Eg, $x \vee \neg y \vee z$, not $\{\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=1\}\{\mathrm{x}=0 . \mathrm{y}=1 . \mathrm{z}=0\})$

Theorem 9.3 NAESAT is NP-complete.

1. The reduction from Circuit SAT to SAT;
2. Add additional new variable z to all clauses with fewer than 3 literals.

Independent set (in a graph):
$G=(V, E), I \subseteq V . I$ is an independent set of G iff for all $i, j \in I$, $(i, j) \notin E$.

INDEPENDENT SET: Given a graph G and a number k, is there an independent set I of G with $|I| \geq k$?

Theorem 9.4 Independent SEt is NP-complete. Reduce 3 -SAT to it. If there are m clauses, let $k=m$.

1. Each clause corresponds to one triangle.
2. Complement literals are joined by an arc.

Figure 9-2. Reduction to INDEPENDENT SET.

Corollary 4-Degree Independent Set is NP-complete. (Still NP-complete when each variable appears at most 3 times and each literal appears at most twice.)

Clique: $\quad G=(V, E), C \subseteq V . C$ is a clique of G iff for all $i, j \in C$, $(i, j) \in E$.

Corollary Clique is NP-complete.

Node Cover: $\quad G=(V, E), N \subseteq V$ is a node cover iff for every edge $(i, j) \in E$, either $i \in N$ or $j \in N$.

Corollary Node Cover is NP-complete.

Cut: $\quad G=(V, E), \emptyset \neq S \varsubsetneqq V$, then $(S, V-S)$ is a cut. The size of a cut is the number of edges between S and $V-S$.

Figure 9-3. Reduction to MAX CUT.

Theorem 9.5 Max Cut is NP-complete. Reduce NAESAT to it.

1. $F=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ clauses, each contains three literals. The variables are $x_{1}, x_{2}, \ldots, x_{n}$.
$\Rightarrow G$ has $2 n$ nodes, namely, $x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}$.
2. (a) For a clause $C_{i}=\alpha \vee \beta \vee \gamma$, add edges $(\alpha, \beta),(\alpha, \gamma),(\beta, \gamma)$ into G. For a clause $C_{i}=\alpha \vee \alpha \vee \beta$, add $(\alpha, \beta),(\alpha, \beta)$ into G.
(b) For any variable x_{i}, let n_{i} be the number of occurrences of either x_{i} or $\neg x_{i}$ (i.e., their sums). Add n_{i} edges between x_{i} and $\neg x_{i}$. ($3 m$ edges are added in total.)
3. If F is NAESAT, let S be the set of literals that is true. Then $(S, V-S)$ is a cut of size

$$
2 m+3 m=5 m
$$

4. If G has a cut S of size 5 m or more, without loss of generality, we assume x_{i} and $\neg x_{i}$ are in different side. There are exactly $3 m$ edges introduced in 2.(b). There are at most $2 m$ edges introduced in 2 .(a), which equals to $2 m$ if and only if all clauses are NAESAT.

Max Bisection: A special Max Cut with $|S|=|V-S|$.

Lemma 9.1 Max Bisection is NP-complete.
Indeed, the proof of Theorem 9.5 is a one. Or, simply add $|V|$ isolated nodes into G.

Bisection Width: Separate the nodes into two equal parts with minimum cut.

Remark It is a generalization of Min Cut, which is in P. (Max Flow=Min Cut).

Theorem 9.6 Bisection Width is NP-complete.
Let $G=(V, E)$ where $|V|=2 n$, then G has a bisection of size k if and only if the complement of G has a bisection of size $n^{2}-k$.

Hamilton Path: Given an undirected graph G, does it have a Hamilton path?

Theorem Hamilton Path is NP-complete.
Reduce 3-SAT to it.

1. choice gadget

2. consistency gadget

Figure 9-5. The consistency gadget.
3. constraint gadget

Figure 9-6. The constraint gadget.
4. Reduction from 3-SAT to Hamilton Path:
(a) Start from node 1 , end with node 2.
(b) All \odot nodes are connedted in a big clique.

[^0]Corollary TSP(D) is NP-complete.
Reduce Hamilton Path to it.

$$
d(i, j)= \begin{cases}1 & \text { if }(i, j) \text { is an edge in } G \\ 2 & \text { otherwise }\end{cases}
$$

We also add an extra node that connects to other nodes with distance 1.
G has an HP iff $R(G)$ has an HC of length $n+1$.
k-coloring of a graph: Color a graph with at most k colors such that no two adjacent nodes have the same color.

Theorem 9.8 3-Coloring is NP-complete.

Figure 9-8. The reduction to 3 -COLORING.
Reduce NAESAT to it.

1. choice gadget: upper part
2. constraint gadget: lower part

Tripartite Matching: Given $T \subseteq B \times G \times H$, $|B|=|G|=|H|=n$, try to find n triples in T s.t. no two of which have a component in common.
(B: boys, G: girls, H: homes)

Theorem 9.8 Tripartite Matching is NP-complete.

Figure 9-9. The choice-consistency gadget.
Reduce 3-SAT to it.

1. For each variable x_{i}, we construct a choice-consistency gadget.
(a) Let k be the maximum of the occurrences of x and $\neg x$ (i.e.,

$$
\left.\max \left\{\operatorname{occ}\left(x_{i}\right), \operatorname{occ}\left(\neg x_{i}\right)\right\}\right) .
$$

(b) There are k boys, k girls, $2 k$ homes in this gadget.
2. For each clause $(\alpha \vee \beta \vee \gamma)$, construct a new added triple (b, g, h) where h is either α, β, or γ, not joined by another triple in this step.

3. Suppose there are m clauses. Since $\operatorname{occ}\left(x_{i}\right)+\operatorname{occ}\left(\neg x_{i}\right) \leq 2 k_{i}$, we have $3 m \leq|H|$. Hence, there are at least $3 m$ homes. The number of boys is $\frac{|H|}{2}+m \leq|H|$. Introduce ℓ more boys \&
girls such that $|B|=|G|=|H|$. For each of the ℓ boys and girls, add $|H|$ triples that connect to all homes.

Set Covering: $F=\left\{S_{1}, \ldots, S_{m}\right\}$ of subsets of a finite set U.
Find a minimum sets in F whose union is U.

Set Packing: $F=\left\{S_{1}, \ldots, S_{m}\right\}$ of subsets of a finite set U. Find a maximum sets in F that are pairwise disjoint.

Exact Cover by 3-Set: $F=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of a finite set U, and $\left|S_{i}\right|=3,|U|=3 m$ for some $m \leq n$. Find m sets in F that are disjoint and have U as their union.

All of these problems are generalization of Tripartite Matching. Hence, they are all NP-complete.

EXACT COVER BY 3-SEY

TRIPARTコTE MATCHJNG

Integer Programming: Given a system of linear inequalities with integer coefficients, does it have an integer solution?

Theorem Integer Programming is NP-complete.
Reduce Set Covering to it. Let $F=\left\{S_{1}, \ldots, S_{n}\right\}$ be subsets of $U . x=\left(x_{1} x_{2} \cdots x_{n}\right)^{t} . x_{i}= \begin{cases}1 & \text { if } S_{i} \text { is in the cover; } \\ 0 & \text { otherwise } .\end{cases}$
$A=\left(a_{i, j}\right), a_{i, j}=1$ iff the i th element in U belongs to S_{j}.

$$
\Rightarrow\left\{\begin{array}{l}
A x \geq \overrightarrow{1} \\
\sum_{i=1}^{n} x_{i} \leq B, \text { where } B \text { is the budget } \\
0 \leq x_{i} \leq 1
\end{array}\right.
$$

Knapsack: $\{1,2, \ldots, n\}, n$ items. Item i has value $v_{i}>0$ and weight $w_{i}>0$. Try to find a subset $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$ for some W and K.

Theorem 9.10 Knapsack is NP-complete.

\rightarrow	0	0	0	1	0	1	1	0	0	0	0	0
	1	1	0	0	1	0	0	0	0	0	0	0
\rightarrow	1	0	1	0	0	0	0	1	0	0	0	0
\rightarrow	0	1	0	0	0	0	0	0	1	0	0	1
\rightarrow	0	0	1	1	1	0	0	0	0	0	0	0
+	0	0	0	0	1	0	0	0	0	1	1	0
+	1	0	1	1	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1

Figure 9.10. Reduction to KNAPSACK.

Reduce Exact Cover By 3 -Set to it. $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$, an instance of Exact Cover By 3-Set, $U=\{1,2, \ldots, 3 m\}$. Let $v_{i}=w_{i}=\sum_{j \in S_{i}}(n+1)^{3 m-j}$ and $W=K=\sum_{j=0}^{3 m-1}(n+1)^{j}$. (Never carry.)

Proposition 9.4 Any instance of KnAPSACK can be solved in $O(n W)$ time, where n is the number of items and W is the weight limit.

We can solve this by dynamic programming. $V(w, i)$: the largest value attainable by selecting some among the first i items so that the total weight is no more than w.

$$
\left\{\begin{array}{l}
V(w, i+1)=\max \left\{V(w, i),\left[w \geq w_{i+1}\right]\left(v_{i+1}+V\left(w-w_{i+1}, i\right)\right)\right\} \\
\quad \text { for } i \geq 0 \text { and } 0 \leq w \leq W \\
V(w, 0)=0 \text { for } 0 \leq w \leq W
\end{array}\right.
$$

If $V(W, n) \geq K$, then answer "yes."

[^0]: © all these nodes are connected in a big clique.

