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/ Reduction \

To reduce Problem A to Problem B, we mean if B is solved, then A
is solved.

x: an instance of Problem A
R: transformation from A to B

R(x): an instance of B

We require R(x) € B iff z € A.
Hence B is solved implies that A is solved.
Or, B is at least as hard as A.
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For computational problems, we say language L is reducible to Lo
if there is a log-space reduction R such that

x € Ly if and only if R(z) € Lo

for any string x as the input of decision problem for L.




/ Proposition 8.1 \

If R is a log-space reduction, then R is a polynomial-time

reduction.

1. There are at most O(nc"'8™) possible configurations where c
and k are constants..

2. If a computation for a Turing machine is terminated, each

configuration can appear at most once.

3. Hence, 'R uses at most polynomial steps.




/ Reducing Hamilton Path (HP) to SAT\

HP: Given a graph, whether there is a path that visits each node

exactly once.

G has an HP iff R(G) is satisfiable.

x; ;: node j 1s the ith node in the HP.
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/ Reducing Reachability To SAT \

Given a graph GG labeled from 1 to n, is there a path from node 1

to node n in G?
gi.;.k: there is a path from node 7 to node j and this path passes
through nodes with indices at most k.

(

gi.j.0, if (i,7) is an edge in G
—gij0, if (4,7) € £

gin,n-

R(G) = <

\

Then node 1 can reach node n in G if and only if R(G) is satisfiable.
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Reducing Circuit SAT to SAT \
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Figure 4-2. Two circuits.
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/ Reducing Circuit Value to Circuit SAT\

Reduction by generalization.




/ Proposition 8.2 \

If R is a reduction from L to Lo and R’ is a reduction from Lo to
L3, then there is a reduction from L to Ls.

Given any «x (either z & Ly or x € L), we have
xv € Ly iff R(x) € Ly iff R'(R(x)) € Ls.

Thus, we have a reduction s.t. z € Ly iff R'(R(x)) € Ls.




/However, we cannot implement the composition R’ o R as \
1. Compute R(x);
2. Compute R'(R(x)).

This is because we may need polynomial spaces in order to store
R(z) in Step 1.

p

x| — Mg Mg (x).ip Mp R (R(x))
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/ Complete Problems \

C: complexity class
L: a language in C
We say L is C-complete if any language L’ € C can be reduced to L.

Examples:
NP-complete, P-complete, PSPACE-complete, NL-complete
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/Deﬁnition A class C’ is closed under reductions if whenever L is\
reducible to L’ and L’ € C’, then also L € C’.

Remark

1. A complete problem is the least likely among all problems in C
to belong in a weaker class C' C C.

2. If it does, then the whole class C coincides with the weaker
class C’, as long as C’ is closed under reduction.
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/ Proposition 8.3 \

P, NP, coNP, L, NL, PSPACE, and EXP are all closed under
log-space reductions.

Remark:
If an NP-complete problem is in P, then P=NP.
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/ Proposition 8.4 \

If two classes C and C’ are both closed under reductions, and there
is a language L which is complete for both C and C’, then C = C’.

Observe that C C C’ and C’ C C, and thus C = C'.
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Cook’s Theorem
SAT is NP-complete.
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Table Method
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Figure 8.3. Computation table.
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the algorithm.

Theorem 8.1 \

CIRCUIT VALUE is P-complete.

p(|z|) x p(|z|) size computation table where p is the time bound for
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\Corollary: MONOTONE CIRCUIT VALUE is P-complete. /
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Cook’s Theorem

SAT is NP-complete.
To standardize the behavior of non-determinism:
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Figure 8-5. Reducing the degree of nondeterminism.
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Figure 8-6. The construction for Cook's theorem.
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