Theory of Computation Chapter 7: Relations Between Complexity Classes

Guan-Shieng Huang

Apr. 14, 2003 Mar. 1, 2009

Parameters for a Complexity Class

- model of computation: multi-string Turing machine
- modes of computation
 - 1. deterministic mode
 - 2. nondeterministic mode
- a resource we wish to bound
 - 1. time
 - 2. space
- a bound f mapping from \mathbb{N} to \mathbb{N} .

Definition 7.1: Proper Function

- $f:\mathbb{N}\to\mathbb{N}$ is proper if
 - 1. f is non-decreasing (i.e., $f(n+1) \ge f(n)$);
 - 2. there is a k-string TM M_f with I/O such that for any input x of length n, M_f computes $\sqcup^{f(n)}$ in time O(n + f(n)).

Example 7.1

- 1. f(n) = c is proper.
- 2. $f(n) = \lceil \lg n \rceil$ is proper. Since $\lfloor \lg n \rfloor + 1$ is the length of binary digits for n.
- 3. $(\lg n)^2, n \lg n, n^2, n^3 + 3n, 2^n, \sqrt{n}, n!$ are all proper.

Remark If f and g are proper, then so are f + g, $f \cdot g$, 2^g , and $f \circ g$. $(f(n) \ge n \text{ for the last case})$

Definition

A Turing machine M (with or without I/O, deterministic or nondeterministic) is precise if there are functions f and g such that for any input x, M(x) halts after precisely f(|x|) steps and uses precisely g(|x|) spaces.

Proposition 7.1

Suppose that a TM M (deterministic or not) decides a language L within time (or space) f(n) where f is a proper function. Then there is a precise TM M' that decides L in time (or space, resp.) O(f(n)).

- 1. Compute $M_f(x)$. Use the output of $M_f(x)$ as a "yardstick" (alarm clock).
- 2. Run M according to the "yardstick."

Definition: Complexity Classes

TIME(f): deterministic time
 SPACE(f): deterministic space
 NTIME(f): nondeterministic time
 NSPACE(f): nondeterministic space
 where f is always a proper function.

2.
$$\begin{split} \text{TIME}(n^k) &= \bigcup_{j>0} \text{TIME}(n^j) \ (=\mathcal{P}) \\ \text{NTIME}(n^k) &= \bigcup_{j>0} \text{NTIME}(n^j) \ (=\mathcal{NP}) \end{split}$$

3. PSPACE = SPACE
$$(n^k)$$

NPSPACE = NSPACE (n^k)
EXP = TIME (2^{n^k})
 $\mathcal{L} = SPACE(\lg n)$
 $\mathcal{NL} = NSPACE(\lg n)$

Complement of a Decision Problem

- 1. A decision problem L is a triple (M_F, I_P, I_N) where
 - (a) $I_P \cup I_N \subseteq \Sigma^*$ and $I_P \cap I_N = \emptyset$;

(b) M_F is a Turing machine such that $M_F(x) =$ "yes" when $x \in I_P \cup I_N$ and $M_F(x) =$ "no" when $x \notin I_P \cup I_N$.

We call $x \in \Sigma^*$ a positive instance whenever $x \in I_P$ and $x \in \Sigma^*$ a negative instance whenever $x \in I_N$. The purpose of M_F is to verify the format of instances for L.

- 2. A decision problem is called decidable when there exists a Turing machine D such that D(x) = "yes" for $x \in I_P$ and D(x) = "no" for $x \in I_N$.
- 3. $\overline{L} = (M'_F, I'_P, I'_N)$ is called the complement of L when $M'_F = M_F, I'_P = I_N$, and $I'_N = I_P$. That is, they swap positive and negative instances.

Complement of Complexity Classes

Definition

For any complexity class \mathcal{C} , let $co\mathcal{C}$ be the class $\{\overline{L}|L \in \mathcal{C}\}$.

Corollary C = coC if C is a deterministic time or space complexity class.

That is, all deterministic time and space complexity classes are closed under complement.

Complement of Nondeterministic Classes

Non-deterministic computation N_1 (for L):

accepts a string x if one successful computation exists; (for $x \in I_P$)

rejects a string x if all computations fail. (for $x \in I_N$)

Non-deterministic computation N_2 (for \overline{L}):

 $\begin{cases} \text{accepts a string } x \text{ if one successful computation exists; (for } x \in I'_P \\ \text{rejects a string } x \text{ if all computations fail. (for } x \in I'_N) \\ \text{where } I'_P = I_N \text{ and } I'_N = I_P. \end{cases}$

We cannot obtain N_2 from N_1 by simply interchanging the "yes"/"no" answer!

Example

1. SAT-complement (or coSAT): Given a Boolean expression ϕ in conjunctive normal form, is it unsatisfiable?

Remark

It is an important open problem whether nondeterministic time complexity classes are closed under complement.

Halting Problem with Time Bounds

Definition

 $H_f = \{M; x \mid M \text{ accepts input x after at most } f(|x|) \text{ steps} \}$ where $f(n) \ge n$ is a proper complexity function.

Lemma 7.1 $H_f \in \text{TIME}(f(n)^3)$ where n = |M; x|. $(H_f \in \text{TIME}(f(n) \cdot \lg^2 f(n)))$

Lemma 7.2

 $H_f \not\in \mathtt{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof: By contradiction. Suppose M_{H_f} decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Define $D_f(M)$ as

if $M_{H_f}(M; M) =$ "yes" then "no", else "yes".

What is $D_f(D_f)$?

If
$$D_f(D_f) =$$
 "yes", then $M_{H_f}(M_{D_f}; M_{D_f}) =$ "no",
"no" "yes".

Contradiction!

The Time Hierarchy Theorem

Theorem 7.1

If $f(n) \ge n$ is a proper complexity function, then the class TIME(f(n)) is strictly contained within $TIME(f(2n+1)^3)$.

Remark

A stronger version suggests that

 $\mathtt{TIME}(f(n)) \subsetneqq \mathtt{TIME}(f(n) \lg^2 f(n)).$

Corollary \mathcal{P} is a proper subset of EXP.

- 1. \mathcal{P} is a subset of $\text{TIME}(2^n)$.
- 2. $\text{TIME}(2^n) \subsetneqq \text{TIME}((2^{2n+1})^3)$ (Time Hierarchy Theorem) $\text{TIME}((2^{2n+1})^3) \subseteq \text{TIME}(2^{n^2}) \subseteq \text{EXP}.$

The Space Hierarchy Theorem

If f(n) is a proper function, then SPACE(f(n)) is a proper subset of $SPACE(f(n) \lg f(n))$.

(Note that the restriction $f(n) \ge n$ is removed from the Time Hierarchy Theorem.)

The Gap Theorem

Theorem 7.3 There is a recursive function f from \mathbb{N}_0 to \mathbb{N}_0 such that $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$.

The Reachability Method

Theorem 7.4 Suppose that f(n) is a proper complexity function.

1. $SPACE(f(n)) \subseteq NSPACE(f(n)), TIME(f(n)) \subseteq NTIME(f(n)).$ (:: DTM is a special NTM.)

2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)).$

3. $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\lg n + f(n)}) \text{ for } k > 1.$

Corollary

```
\mathcal{L} \subseteq \mathcal{NL} \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq \mathrm{PSPACE}.
```

However, $\mathcal{L} \subsetneqq PSPACE$. Hence at least one of the four inclusions is proper. (Space Hierarchy Theorem)

```
Theorem 7.5: (Savitch's Theorem)
REACHABILITY \in SPACE(\lg^2 n).
```

Corollary

- 1. $\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f(n)^2)$ for any proper complexity function $f(n) \ge \lg n$.
- 2. PSPACE = NPSPACE

Immerman-Szelepscényi Theorem

Theorem 7.6 If $f \ge \lg n$ is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Corollary $\mathcal{NL} = co\mathcal{NL}$.