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Parameters for a Complexity Class

• model of computation: multi-string Turing machine

• modes of computation

1. deterministic mode

2. nondeterministic mode

• a resource we wish to bound

1. time

2. space

• a bound f mapping from N to N.
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Definition 7.1: Proper Function

f : N → N is proper if

1. f is non-decreasing (i.e., f(n + 1) ≥ f(n));

2. there is a k-string TM Mf with I/O such that for any input x

of length n, Mf computes tf(n) in time O(n + f(n)).
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Example 7.1

1. f(n) = c is proper.

2. f(n) = dlg ne is proper.

Since blg nc + 1 is the length of binary digits for n.

3. (lg n)2, n lg n, n2, n3 + 3n, 2n,
√

n, n! are all proper.

Remark If f and g are proper, then so are f + g, f · g, 2g, and

f ◦ g. (f(n) ≥ n for the last case)
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Definition

A Turing machine M (with or without I/O, deterministic or

nondeterministic) is precise if there are functions f and g such that

for any input x, M(x) halts after precisely f(|x|) steps and uses

precisely g(|x|) spaces.
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Proposition 7.1

Suppose that a TM M (deterministic or not) decides a language L

within time (or space) f(n) where f is a proper function. Then

there is a precise TM M ′ that decides L in time (or space, resp.)

O(f(n)).

1. Compute Mf (x). Use the output of Mf (x) as a “yardstick”

(alarm clock).

2. Run M according to the “yardstick.”
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Definition: Complexity Classes

1. TIME(f): deterministic time

SPACE(f): deterministic space

NTIME(f): nondeterministic time

NSPACE(f): nondeterministic space

where f is always a proper function.

2. TIME(nk) =
⋃

j>0 TIME(n
j) (= P)

NTIME(nk) =
⋃

j>0 NTIME(n
j) (= NP)

3. PSPACE = SPACE(nk)

NPSPACE = NSPACE(nk)

EXP = TIME(2nk

)

L = SPACE(lg n)

NL = NSPACE(lg n)
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Complement of a Decision Problem

1. A decision problem L is a triple (MF , IP , IN ) where

(a) IP ∪ IN ⊆ Σ∗ and IP ∩ IN = ∅;
(b) MF is a Turing machine such that MF (x) = “yes” when

x ∈ IP ∪ IN and MF (x) = “no” when x 6∈ IP ∪ IN .

We call x ∈ Σ∗ a positive instance whenever x ∈ IP and x ∈ Σ∗

a negative instance whenever x ∈ IN . The purpose of MF is to

verify the format of instances for L.

2. A decision problem is called decidable when there exists a

Turing machine D such that D(x) = “yes” for x ∈ IP and

D(x) = “no” for x ∈ IN .

3. L̄ = (M ′

F , I ′

P , I ′

N ) is called the complement of L when

M ′

F = MF , I ′

P = IN , and I ′

N = IP . That is, they swap positive

and negative instances.
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Complement of Complexity Classes

Definition

For any complexity class C, let coC be the class {L̄|L ∈ C}.

Corollary C = coC if C is a deterministic time or space

complexity class.

That is, all deterministic time and space complexity classes are

closed under complement.
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Complement of Nondeterministic Classes

Non-deterministic computation N1 (for L):






accepts a string x if one successful computation exists; (for x ∈ IP )

rejects a string x if all computations fail. (for x ∈ IN )

Non-deterministic computation N2 (for L̄):






accepts a string x if one successful computation exists; (for x ∈ I ′

P )

rejects a string x if all computations fail. (for x ∈ I ′

N )

where I ′

P = IN and I ′

N = IP .

We cannot obtain N2 from N1 by simply interchanging the

“yes”/“no” answer!
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Example

1. SAT-complement (or coSAT): Given a Boolean expression φ in

conjunctive normal form, is it unsatisfiable?
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Remark

It is an important open problem whether nondeterministic time

complexity classes are closed under complement.
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Halting Problem with Time Bounds

Definition

Hf = {M ; x| M accepts input x after at most f(|x|) steps}
where f(n) ≥ n is a proper complexity function.

Lemma 7.1 Hf ∈ TIME(f(n)3) where n = |M ; x|.
(Hf ∈ TIME(f(n) · lg2 f(n)))
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Lemma 7.2

Hf 6∈ TIME(f(bn
2 c)).

Proof: By contradiction. Suppose MHf
decides Hf in time

f(bn
2 c). Define Df (M) as

if MHf
(M ; M)=“yes” then “no”, else “yes”.

What is Df (Df )?

If Df (Df )= “yes”, then MHf
(MDf

; MDf
) = “no”,

“no” “yes”.

Contradiction!
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The Time Hierarchy Theorem

Theorem 7.1

If f(n) ≥ n is a proper complexity function, then the class

TIME(f(n)) is strictly contained within TIME(f(2n + 1)3).

Remark

A stronger version suggests that

TIME(f(n)) & TIME(f(n) lg2 f(n)).
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Corollary P is a proper subset of EXP.

1. P is a subset of TIME(2n).

2. TIME(2n) & TIME((22n+1)3) (Time Hierarchy Theorem)

TIME((22n+1)3) ⊆ TIME(2n2

) ⊆ EXP.
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The Space Hierarchy Theorem

If f(n) is a proper function, then SPACE(f(n)) is a proper subset of

SPACE(f(n) lg f(n)).

(Note that the restriction f(n) ≥ n is removed from the Time

Hierarchy Theorem.)
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The Gap Theorem

Theorem 7.3 There is a recursive function f from N0 to N0 such

that TIME(f(n)) = TIME(2f(n)).
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The Reachability Method

Theorem 7.4 Suppose that f(n) is a proper complexity function.

1. SPACE(f(n)) ⊆ NSPACE(f(n)), TIME(f(n)) ⊆ NTIME(f(n)). (∵

DTM is a special NTM.)

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klg n+f(n)) for k > 1.

Corollary

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

However, L & PSPACE. Hence at least one of the four inclusions is

proper. (Space Hierarchy Theorem)
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Theorem 7.5: (Savitch’s Theorem)

REACHABILITY ∈ SPACE(lg2 n).

Corollary

1. NSPACE(f(n)) ⊆ SPACE(f(n)2) for any proper complexity

function f(n) ≥ lg n.

2. PSPACE = NPSPACE
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Immerman-Szelepscényi Theorem

Theorem 7.6 If f ≥ lg n is a proper complexity function, then

NSPACE(f(n)) = coNSPACE(f(n)).

Corollary NL = coNL.
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