Theory of Computation Chapter 4: Boolean Logic

Guan-Shieng Huang

Apr. 7, 2003 Feb. 19, 2006

Boolean Expressions

- $X = \{x_1, x_2, \ldots\}$ a countably infinite variables, each can be TRUE or FALSE.
- Logical connectivities:

 \vee : logical or; \wedge : logical and; \neg : logical not.

• The syntax:

A Boolean expression can be one of

- 1. a Boolean variable, such as x_i ;
- 2. $\neg \phi_1$;
- 3. $(\phi_1 \lor \phi_2)$;
- 4. $(\phi_1 \wedge \phi_2)$;

where ϕ_1, ϕ_2 are Boolean expressions. (Inductive definition)

Remarks

- $\neg \phi_1$: the negation of ϕ_1
- $(\phi_1 \vee \phi_2)$: the disjunction of ϕ_1 and ϕ_2
- $(\phi_1 \wedge \phi_2)$: the conjunction of ϕ_1 and ϕ_2
- x_i or $\neg x_i$ is called a literal.

The Semantics

A truth assignment T is a mapping from a set of variables $X' \subset X$ to $\{TRUE, FALSE\}$.

- 1. $T \models x_i \text{ if } T(x_i) = \text{TRUE};$
- 2. $T \models \neg \phi \text{ if not } T \models \phi;$
- 3. $T \models (\phi_1 \lor \phi_2)$ if $T \models \phi_1$ or $T \models \phi_2$;
- 4. $T \models (\phi_1 \land \phi_2)$ if $T \models \phi_1$ and $T \models \phi_2$;

where T is appropriate.

Example

 $\phi = ((\neg x_1 \lor x_2) \land x_3) \text{ and}$ $T = \{x_1 \to \text{TRUE}, x_2 \to \text{FALSE}, x_3 \to \text{TRUE}\},$ then $T \not\models \phi.$ $\therefore T \not\models \neg x_1 \text{ and } T \not\models x_2, \therefore T \not\models (\neg x_1 \lor x_2).$

Remark

- 1. $(\phi_1 \Rightarrow \phi_2)$ as a shorthand of $(\neg \phi_1 \lor \phi_2)$.
- 2. $(\phi_1 \Leftrightarrow \phi_2)$ as a shorthand of $((\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1))$.

Two expressions ϕ_1 and ϕ_2 are equivalent if $T \models \phi_1$ if and only if $T \models \phi_2$ for all appropriate T. Written as $\phi_1 \equiv \phi_2$.

1.
$$(\phi_1 \vee \phi_2) \equiv (\phi_2 \vee \phi_1)$$
; (commutative law)

2.
$$(\phi_1 \wedge \phi_2) \equiv (\phi_2 \wedge \phi_1);$$

3.
$$\neg \neg \phi_1 \equiv \phi_1$$
; (double-negation law)

4.
$$((\phi_1 \lor \phi_2) \lor \phi_3) \equiv (\phi_1 \lor (\phi_2 \lor \phi_3));$$
 (associative law)

5.
$$((\phi_1 \land \phi_2) \land \phi_3) \equiv (\phi_1 \land (\phi_2 \land \phi_3));$$

6.
$$((\phi_1 \land \phi_2) \lor \phi_3) \equiv ((\phi_1 \lor \phi_3) \land (\phi_2 \lor \phi_3));$$
 (distributive law)

7.
$$((\phi_1 \lor \phi_2) \land \phi_3) \equiv ((\phi_1 \land \phi_3) \lor (\phi_2 \land \phi_3));$$

8.
$$\neg(\phi_1 \lor \phi_2) \equiv (\neg \phi_1 \land \neg \phi_2)$$
; (De Morgan's law)

9.
$$\neg(\phi_1 \land \phi_2) \equiv (\neg \phi_1 \lor \neg \phi_2);$$

10.
$$(\phi_1 \vee \phi_1) \equiv \phi_1$$
. (idempotent law)

And \land and \lor are dual. You can interchange all \land 's with all \lor 's.

Remarks

- 1. $\bigwedge_{i=1}^n \phi_i$ stands for $(\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n)$.
- 2. $\bigvee_{i=1}^{n} \phi_i$ stands for $(\phi_1 \vee \phi_2 \vee \cdots \vee \phi_n)$.

Normal Forms

Conjunctive-normal form:

 $\phi = \bigwedge_{i=1}^{n} C_i$ where $n \geq 1$ and each C_i is the disjunction of literals. C_i is called a clause.

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

Disjunctive-normal form:

 $\phi = \bigvee_{i=1}^{n} D_i$ where $n \geq 1$ and each D_i is the conjunction of literals. D_i is called an implicant.

$$(x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_2)$$

Theorem 4.1

Every Boolean expression is equivalent to one in CNF (also one in DNF).

Example

$$(p \Rightarrow q) \land (q \Rightarrow p)$$

$$= (\neg p \lor q) \land (\neg q \lor p)$$

$$= (\neg p \land (\neg q \lor p)) \lor (q \land (\neg q \lor p))$$

$$= (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)$$

$$= (\neg p \land \neg q) \lor (p \land q).$$

Satisfiability

- A Boolean expression ϕ is satisfiable if there is a truth assignment T such that $T \models \phi$.
- An expression ϕ is valid (or tautology) if $T \models \phi$ for all T appropriate to ϕ . (Written as $\models \phi$)
- ϕ is unsatisfiable if $T \not\models \phi$ for all T.

Proposition 4.2

A Boolean expression is unsatisfiable if and only if its negation is valid. (ϕ is unsatisfiable $\iff \models \neg \phi$)

Example 4.2

- 1. $(x_1 \vee \neg x_2) \wedge \neg x_1$; (satisfiable)
- 2. $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$. (unsatisfiable)

SAT

Given any Boolean expression ϕ in conjunctive normal form, is it satisfiable?

Remarks

- 1. SAT $\in \mathcal{NP}$.
 - (a) Guess an assignment.
 - (b) Verify it.
- 2. SAT is NP-complete (Chap. 8).
- 3. SAT can be easily solved if ϕ is expressed in disjunctive normal form.

$$((\neg p \land \neg q) \lor (p \land q))$$

Horn

Horn clause: A clause is Horn if it has at most one positive literal.

 $x_1 \wedge x_2 \cdots \wedge x_m \Rightarrow y$ could be written as $\neg x_1 \vee \neg x_2 \vee \cdots \vee \neg x_m \vee y$.

Horn SAT: Given any expression in the conjunction of Horn clauses, is it satisfiable?

Example:

$$x_1 \vee \neg x_2, \quad x_1 \vee \neg x_3, \quad \neg x_2 \vee \neg x_3, \quad \neg x_1 \vee x_4, \quad x_1.$$

 $x_1 \Rightarrow x_2, \quad x_3 \Rightarrow x_1, \quad x_2 \wedge x_3 \Rightarrow \text{FALSE}, \quad x_1 \Rightarrow x_4, \quad x_1.$

Algorithm

- 1. Initially, $T := \emptyset$. (That is, all variables are set FALSE.)
- 2. Pick any unsatisfiable implication $x_1 \wedge x_2 \wedge \cdots \wedge x_m \Rightarrow y$ and add y to T; repeat this rule until all implications are satisfied.

Intuition: Try to assign all variables on the premises false.

Proposition: Any assignment T' satisfying ϕ must contain T. That is, T is the minimum assignment satisfying ϕ .

Theorem 4.2 HORNSAT is in \mathcal{P} .

Boolean Function

- 1. An *n*-ary Boolean function is a function from $\{\text{TRUE}, \text{FALSE}\}^n \to \{\text{TRUE}, \text{FALSE}\}.$
- 2. A Boolean expression ϕ expresses a Boolean function f if for all truth value $t = (t_1, \ldots, t_n)$,

$$f(t) = \text{TRUE iff } T \models \phi,$$

where $T(x_i) = t_i$ for $1 \le i \le n$.

Proposition 4.3

Any *n*-ary Boolean function f can be expressed as a Boolean expression ϕ_f involving variables x_1, x_2, \ldots, x_n .

x_1	x_2	x_3	f
0	0	0	1
0	0	1	0
0	1	0	1
1	0	0	0
0	1	1	0
1	0	1	1
1	1	0	0
1	1	1	0

 $(\neg x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land x_3)$

Boolean Circuit

- 1. no cycle in the graph;
- 2. the in-degree of each node equals to 0, 1, or 2;
- 3. each node represents either TRUE, FALSE, \land , \lor , \neg , or a variable x_i .

Figure 4-2. Two circuits.

CIRCUIT SAT Given any circuit C, is there a truth assignment T appropriate to C such that T(C) = TRUE?

CIRCUIT VALUE When an assignment T is given, ask whether T(C) is TRUE.

Theorem 4.3

For any $n \ge 2$, there is an *n*-ary Boolean function f such that no Boolean circuit with $\frac{2^n}{2n}$ or fewer gates can compute it.