Theory of Computation
Chapter 3: Computability

Guan-Shieng Huang

Mar. 24, 2003
Feb. 19, 2006

0-0



/ Universal Turing Machines \

e A Turing machine is a special hardware to do computation.
A modern computer can load different programs and do the
corresponding computational tasks.

Can a Turing machine act as a universal computational device?

e Universal Turing Machines
The input of a universal TM U is M;x, where M is the
description of a TM, x is its input. We can imagine that U
interprets M and executes M with the input z. Written as

UM;x)=M(x).




/ Halting Problem \

Given the description of a TM M and its input x, will M halt on x7

H ={M;z| M(x)#/}.




/ Proposition 3.1

H is recursively enumerable (R.E.).

1. R.E. = thereis a TM D such that

“ves” if M(xz) #,/

D(M:;zx) =
e otherwise.

2. The universal TM U can serve this task. We only need to
modify U such that
when M (x) halts, U terminates at “yes”.




/ Theorem 3.1 \

H is not recursive.
1. recursive = there is a TM Mg such that

“ves” if M(x) #/

My (M;z) =
“no” if M(x)=".

2. Proof By Contradiction.
Suppose we have such a TM Mp. Construct a TM D(x) as

(a) On input x, D first simulates My on input x; .

(b) If My accepts x;z, D diverges

(¢c) If My rejects x;x, D halts.
3. That is,

\ D(z) :if My (z;x) = “yes” then  else “yes”. /

4




//;'WMnml)Dﬁ

(a) If D(D)
Step (b)
(b) It D(D) #
Step (c)

=/
= MH(D D) =“yes” = D(D) # /.
ijDm_m>jmm — /.




-

There are countably-many TMs.
There are uncountably-many languages.
Hence, there exists a language that is not recursive.




/ Reduction \

To show that Problem A is undecidable, we establish that if there
were an algorithm for Problem A, then there would be an
algorithm for HALTING H, which is absurd.

Given any M x, we can construct a string y such that
M;x e H iff y € A.

Then A is undecidable.




/ Proposition 3.2
The following languages are not recursive.

1. L, = {M| M halts on all inputs}.

2. Lg={M;x;y| M(z) = y}.

3. Ly = {M; x| there is a y such that M (x) = y}.

4. L. = {M;z| the computation M on input x uses all states of M }.




-

L, = {M| M halts on all inputs}.
Reduce HALTING to this problem.

Given M ;x, we construct
M'(y) : M(zx).

Hence M’ halts on all inputs if and only if M halts on .




-

Lg={M;x;y| M(x) = y}.

Given M ;x, we construct
M'(x") : if (M (z) halts), then Output e.

Hence M';x';e € Ly if and only if M halts on .

10



4 N

Ly = {M; z| there is a y such that M (x) = y}
The meaning of this problem is not clear.

°® M({I;) — {CﬁyeS”, “HO”, Céhalt”’ /}.
e Does M halts on z?

o {M;x| M(x)= c} for some constant string c.

11



/ Proposition 3.3

If L is recursive, then so is L.

1. Let D be the TM that decides L:

“ves” if x € L

D(x) =
“no” ifxz & L.

2. Comstruct D’ such that

D'(s) = “yes” if D(x)=""no”
“no” if D(x)="yes”.

Then D’ decides L.

-

12



/ Proposition 3.4

L is recursive if and only if both L and L are recursively

enumerable.
1. L i1s recursive =

“ves” ifx €L

DL(z) =
“no” ifx ¢ L.

2. L is recursively enumerable

“ves" ifx € Lorx gL

M (z) = -
/ ifc e Loraxe€lL.

13



/3. L is recursively enumerable

M, () = “ves” ifx €L
/ if x & L.
4. Given Dy, we construct My, and M7 as follows.
My (x) : if Dy (x) =“yes” then “yes”
else /.
M+(x) : if Dy (x) =“no” then “yes”
else .

5. Given My, and M7, we construct Dy, as

77) then “yeS”

() ' “yes
Z)L T p—
. ccyeS”) then ccnon

\ in parallel.

14



/ Enumerator \

*

E(M) ={x|(s,>,€) pah (¢, y U x Ue) for some q,y}.
That is, E(M) is the set of all strings « such that during M’s

operation on empty string, there is a time at which M’s string ends
with Lzl

15



-

Proposition 3.5

L is R.E. if and only if there is a machine M such that L = E(M).
1. Suppose L = E(M). We construct a TM M’ that accepts L as

follows.

Y

M'(z) : if x appears in the string of M(e) then “yes’

else .
Then M'(x) =“yes” iff x € E(M) = L.

Suppose L is R.E. Then we have a TM M such that

“ves” ifx € L

M(x) =
) J/ ifx ¢ L.

We need to construct a TM M’ such that E(M') = L. M’'(e)

works as follows.

~

/

16



/ (a) Fori=1,2,3,..., simulate M on the ¢ first inputs, one aftb

the other, and each for 7 steps.

(b) If at any point M would halt with “yes” on one of these i
inputs, say x, then M’ write Uzl at the end of its string

before continuing.

17



/ Theorem 3.2: Rice’s Theorem \

Suppose that C is a proper, non-empty subset of the set of all R.E.
languages. Then

“Given a TM M, is L(M) € C” is undecidable.
1. A TM is a string, and a string is a TM.
2. WLOG, we assume that L € C & () ¢ C. We reduce HALTING

to this problem. Given M ;x, we construct
M'(y) :if (M (x) halts) then My (y).

Then M;x € H iff L(M') = L
That is, L(M') e C it M;x € H.

18



/ Recursive Inseparability \

Two disjoint languages L and Lo are recursively inseparable if
there is no recursive language R such that L1 " R =0 and L, C R.
(That is, R contains L; and R contains Lo.)

19



/ Theorem 3.3

Define Ly = {M| M (M) = “yes”} and Ly = {M| M (M) = “no”
Then L and Lo are recursively inseparable.

1. Suppose that recursive language R separates them. Thus,
RNL;=0and Ly, C R.

2. Consider the Mg that decides R. “What is Mr(Mpg)”?
(a) If Mr(Mpg)="“yes”, then Mg € L1 and Mg ¢ R, and then

MR(MR)— no”.
(b) If MR(MR):“no” then Mi € Ly and Mp € R, and then
MR(MR) yes

Hence, this R is absurd.

-

20



/ Corollary \

Let L) = {M| M(e) = “yes”} and L, = {M| M(e) = “no”}. Then
Ly and Lo are recursively inseparable.

1. We reduce L1 and Lo to L} and Li. Given any M, we
construct M'(x) simply as M (M). Hence,

M(M)="yes” iff M’(e)="yes”

and
M (M)=*“no” iff M'(e)=“no”.

2. If L] and L are recursively separable, then so do L; and L.

. /

21




