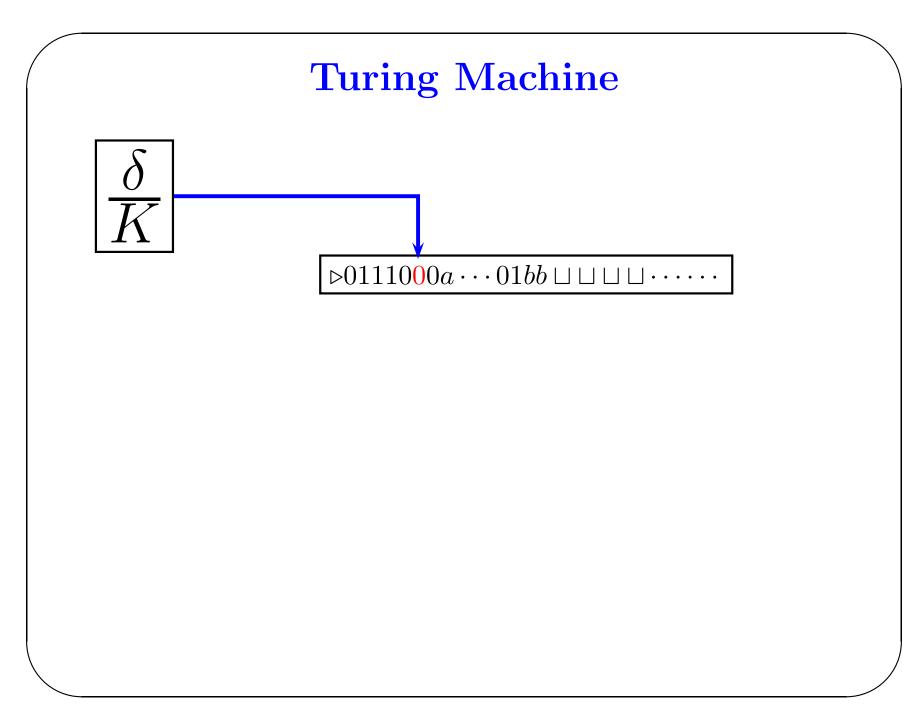
Theory of Computation Chapter 2: Turing Machines

Guan-Shieng Huang

Feb. 24, 2003

Feb. 19, 2006



Definition of TMs

A Turing Machine is a quadruple $M = (K, \Sigma, \delta, s)$, where

- 1. K is a finite set of states; (line numbers)
- 2. Σ is a finite set of symbols including \sqcup and \triangleright ; (alphabet)
- 3. $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}, \text{ a transition function; (instructions)}$
- 4. $s \in K$, the initial state. (starting point)

- h: halt, "yes":accept, "no": reject (terminate the execution)
- →: move right, ←: move left, -: stay
 (move the head)
- \sqcup : blank, \triangleright : the boundary symbol

- $\delta(q, \sigma) = (p, \rho, D)$ While reading σ at line q, go to line p and write out ρ on the tape. Move the head according to the direction of D.
- $\delta(q, \triangleright) = (p, \rho, \rightarrow)$, to avoid crash.

Example 2.1

	$p \in K$,	$\sigma \in \Sigma$	$\delta(p,\sigma)$			
	s, s,	0 1	$(s,0,\rightarrow)$ $(s,1,\rightarrow)$	0.		⊵010
	1.00	û	(q, \sqcup, \leftarrow)	1.		⊳ <u>0</u> 10
	s,	D	$(s, \triangleright, \rightarrow)$	2.	s,	⊳0 <u>1</u> 0
	s,	0	1 1	3.	s,	⊳01 <u>0</u>
	q,	1	(q_0, \sqcup, \to)	4.	s,	⊳010 <u>⊔</u>
,77	q,	Ĺ	(q_1, \sqcup, \to)		q,	⊳01 <u>0</u> ⊔
7	-q,		$(q, \sqcup, -)$	- halt 6.	q_0 ,	⊳01 ⊔ <u>⊔</u>
	q,	D	$(h, \triangleright, \rightarrow)$	7.	s,	⊳01 <u>⊔</u> 0
	$\int_{0}^{q_0}$	0 1	$(s,0,\leftarrow)$	8.	q,	$\triangleright 0\underline{1} \sqcup 0$
	$\lfloor q_0,$		$(s,0,\leftarrow)$	9.	$q_1,$	⊳0 ⊔ <u>⊔</u> 0
	q_0 ,	П	$(s,0,\leftarrow)$	10.	s,	⊳0 <u>⊔</u> 10
	$-q_0$,	D	$(h, \triangleright, \rightarrow)$	11.	q,	⊳ <u>0</u> ⊔ 10
	$\lceil q_1, \rceil$	0	$(s,1,\leftarrow)$	12.	q_0 ,	⊳⊔ <u>⊔</u> 10
	$\lfloor q_1,$	1	$(s,1,\leftarrow)$	13.	s,	⊳ <u>⊔</u> 010
	q_1 ,	П	$(s,1,\leftarrow)$	14.	q,	⊵ ⊔ 010
	$-q_1$,	D	$(h, \triangleright, \rightarrow)$	15.		⊳ <u>⊔</u> 010

Figure 2.1. Turing machine and computation.

Remark

x: input of M

$$M(x) = \begin{cases} \text{"yes"} \\ \text{"no"} \\ y \text{ if } M \text{ entered } h \\ \nearrow \text{ if } M \text{ never terminates} \end{cases}$$

Example 2.2

 $(n)_2 \rightarrow (n+1)_2$ if no overflow happens.

$p \in K$,	$\sigma \in \Sigma$	$\delta(p,\sigma)$
s,	0	$(s,0,\rightarrow)$
s,	1	$(s,1,\rightarrow)$
s,	\sqcup	(q,\sqcup,\leftarrow)
s,	\triangleright	$(s, \triangleright, \rightarrow)$
q,	0	(h, 1, -)
q,	1	$(q,0,\leftarrow)$
q,	\triangleright	$(h, \triangleright, \rightarrow)$

Figure 2.2. Turing machine for binary successor.

Example 2.3 — Palindrome

$p \in K$,	$\sigma \in \Sigma$	$\delta(p,\sigma)$
s	0	$(q_0, \triangleright, \rightarrow)$
s	1	$(q_1, \triangleright, \to)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	\sqcup	$("yes", \sqcup, -)$
q_0	0	$(q_0,0, ightarrow)$
q_0	1	$(q_0,1, ightarrow)$
q_0	\sqcup	(q'_0,\sqcup,\leftarrow)
q_1	0	$(q_1,0, ightarrow)$
q_1	1	$(q_1,1, ightarrow)$
q_1	П	(q_1',\sqcup,\leftarrow)

$p \in K$,	$\sigma \in \Sigma$	$\delta(p,\sigma)$
q_0'	0	(q,\sqcup,\leftarrow)
q_0'	1	("no", 1, -)
q_0'	\triangleright	$("yes", \sqcup, \rightarrow)$
q_1'	0	("no", 1, -)
q_1'	1	(q,\sqcup,\leftarrow)
q_1'	>	("yes", ▷, →)
q	0	$(q,0,\leftarrow)$
q	1	$(q,1,\leftarrow)$
q	\triangleright	$(s, \triangleright, \rightarrow)$

Figure 2.3. Turing machine for palindromes.

Turing Machines as Algorithms

- $L \subseteq (\Sigma \{\sqcup, \triangleright\})^*$, a language
- A TM M decides L if for all string x, $\begin{cases} x \in L \Rightarrow M(x) = \text{"yes"} \\ x \notin L \Rightarrow M(x) = \text{"no"}. \end{cases}$
- A TM M accepts L if for all string x, $\begin{cases} x \in L \Rightarrow M(x) = \text{"yes"} \\ x \notin L \Rightarrow M(x) = \text{?"} \end{cases}$

- If L is decided by some TM, we say L is recursive.
- If L is accepted by some TM, we say L is recursively enumerable.

Proposition 2.1

If L is recursive, then it is recursively enumerable.

Representation of mathematical objects: (data structure)

- 1. graphs, sets, numbers, ...
- 2. All acceptable encodings are polynomially related.
 - (a) binary, ternary
 - (b) adjacency matrix, adjacency list

However, unary representation of numbers is an exception.

k-string Turing Machines

A k-string Turing machine is a quadruple (K, Σ, δ, s) where

- 1. K, Σ, s are exactly as in ordinary Turing machines;
- 2. $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k;$

An Example

$p \in K$,	$\sigma_1 \in \Sigma$	$\sigma_2 \in \Sigma$	$\delta(p,\sigma_1,\sigma_2)$
s,	0	Ц	(s,0, o,0, o)
s,	1	Ш	(s,1, ightarrow,1, ightarrow)
s,	\triangleright	⊳	$(s, \triangleright, \rightarrow, \triangleright, \rightarrow)$
s,	\sqcup	П	$(q,\sqcup,\leftarrow,\sqcup,-)$
q,	0		$(q,0,\leftarrow,\sqcup,-)$
q,	1		$(q,1,\leftarrow,\sqcup,-)$
q,	\triangleright	Ц	$(p, \triangleright, \rightarrow, \sqcup, \leftarrow)$
p,	0	0	$(p,0, ightarrow,\sqcup,\leftarrow)$
p,	1	1	$(p,1,\rightarrow,\sqcup,\leftarrow)$
p,	0	1	("no", 0, -, 1, -)
p,	1	0	("no", 1, -, 0, -)
p,	П	\triangleright	$(\text{"yes"}, \sqcup, -, \triangleright, \to)$

Figure 2.5. 2-string Turing machine for palindromes.

1. If for a k-string Turing machine M and input x we have $(s, \triangleright, x, \triangleright, \epsilon, \ldots, \triangleright, \epsilon) \xrightarrow{M^t} (H, w_1, u_1, \ldots, w_k, u_k)$

for some $H \in \{h, \text{"yes"}, \text{"no"}\}$, then the time required by M on input x is t.

2. If for any input string x of length |x|, M terminates on input x within time f(|x|), we say f(n) is a time bound for M.

(worst case analysis)

TIME(f(n)): the set of all languages that can be decided by TMs in time f(n).

Theorem 2.1

Given any k-string TM M operating within time f(n), we can construct a TM M' operating within time $O(f(n)^2)$ and such that, for any input x, M(x) = M'(x). (by simulation)

Linear Speedup

Theorem 2.2

Let $L \in \text{TIME}(f(n))$. Then, for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon \cdot f(n) + n + 2$.

Definition

$$\mathcal{P} = \bigcup_{k>1} \text{TIME}(n^k).$$

Space Bounds

A k-string TM with input and output is an ordinary k-string TM such that

- 1. the first tape is read-only; (Input cannot be modified.)
- 2. the last tape is write-only.

 (Output cannot be wound back.)

Proposition

For any k-string TM M operating with time bound f(n) there is a (k+2)-string TM M' with input and output, which operates within time bound O(f(n)).

Space Bound for TM

Suppose that, for a k-string TM M and input x,

$$(s, \triangleright, x, \dots, \triangleright, \epsilon) \xrightarrow{M^*} (H, w_1, u_1, \dots, w_k, u_k)$$

where $H \in \{h, \text{"yes"}, \text{"no"}\}$ is a halting state.

- 1. The space required by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.
- 2. If M is a machine with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.

- 1. We say that Turing machine M operates within space bound f(n) if, for any input x, M requires space at most f(|x|).
- 2. A language L is in the space complexity class SPACE(f(n)) if there is a TM with I/O that decides L and operates within space bound f(n).
- 3. Define $\mathcal{L} = SPACE(\lg(n))$.

Theorem 2.3

Let L be a language in SPACE(f(n)). Then, for any $\epsilon > 0$, $L \in \text{SPACE}(2 + \epsilon \cdot f(n))$.

Random Access Machines

```
Input: (i_1, i_2, ..., i_n)
Output: r_0 (accumulator)
Memory: r_0, r_1, r_2, \ldots (infinite memory)
k: program counter
Three address modes: (for x)
 1. j: direct;
 2. \uparrow j: indirect;
 3. = j: immediate.
(arbitrary large number)
```

Instruction	Operand	Semantics
READ	j	$r_0 := i_j$
READ	$\uparrow j$	$r_0 := i_{r_j}$
STORE	j	$r_j := r_0$
STORE	$\uparrow j$	$r_{r_j} := r_0$
LOAD	\boldsymbol{x}	$r_0 := x$
ADD	\boldsymbol{x}	$r_0 := r_0 + x$
SUB	\boldsymbol{x}	$r_0 := r_0 - x$
HALF		$r_0 := \lfloor \frac{r_0}{2} \rfloor$
JUMP	$oldsymbol{j}$	$\kappa:=j$
JPOS	j	if $r_0 > 0$ then $\kappa := j$
JZERO	j	if $r_0 = 0$ then $\kappa := j$
JNEG	j	if $r_0 < 0$ then $\kappa := j$
HALT		$\kappa := 0$

Theorem 2.5

If a RAM program Π computes a function ϕ in time f(n), then there is a 7-string TM which computes ϕ in time $O(f(n)^3)$. (by simulation)

Nondeterministic Machines

A nondeterministic TM is a quadruple $N = (K, \Sigma, \Delta, s)$, where

- 1. K, Σ, s are as in ordinary TM;
- 2. $\Delta \subseteq (K \times \Sigma) \times [(K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}].$

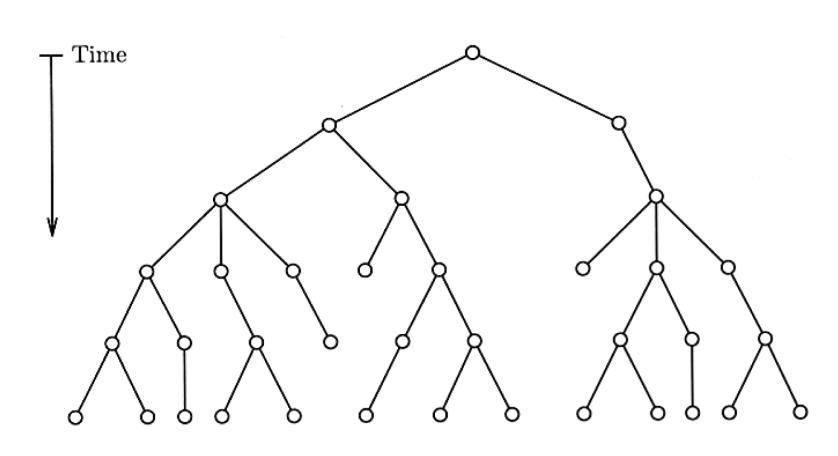


Figure 2-9. Nondeterministic computation.

- 1. N decides a language L if for any $x \in \Sigma^*$, $x \in L$ if and only if $(s, \triangleright, x) \xrightarrow{N^*} (\text{"yes"}, w, u)$ for some strings w and u.
- 2. An input is accepted if there is some sequence of nondeterministic choice that results in "yes".

N decides L in time f(n) if

- 1. N decides L;
- 2. for any $x \in \Sigma^*$, if $(s, \triangleright, x) \xrightarrow{N^k} (\text{"yes"}, w, u)$, then $k \leq f(|x|)$.

Let NTIME(f(n)) be the set of languages decided by NTMs within time f.

Let $\mathcal{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k)$.

We have

$$\mathcal{P} \subseteq \mathcal{NP}$$
.

Example 2.9

 $TSP(D) \in \mathcal{NP}$

- 1. Write out arbitrary permutation of $1, \ldots, n$.
- 2. Check whether the tour indicated by this permutation is less than the distance bound.

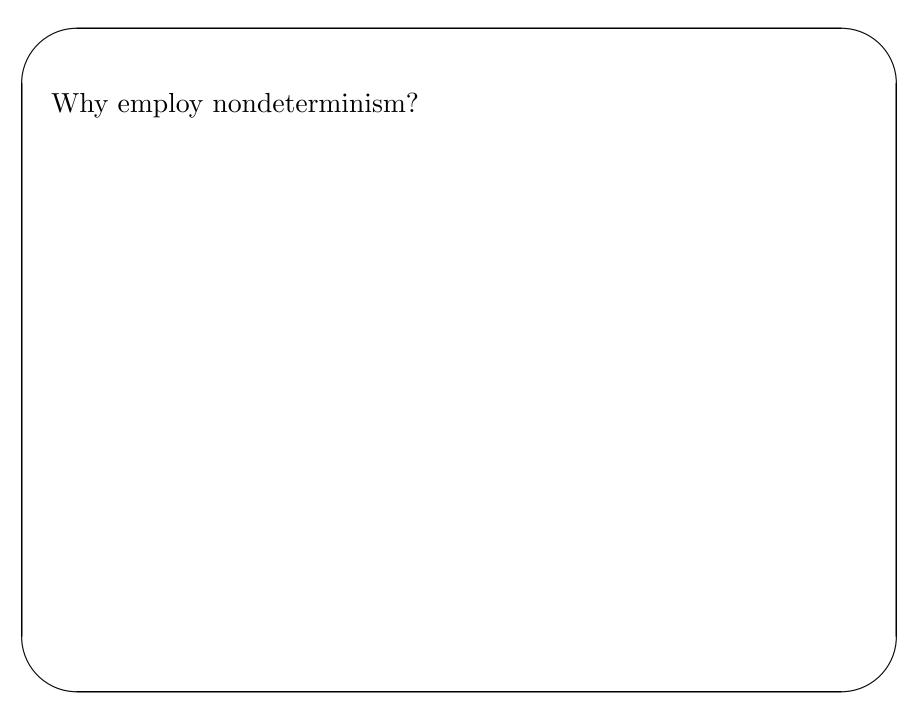
Theorem 2.6

Suppose that language L is decided by an NTM N in time f(n). Then it is decided by a 3-string DTM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

$$(\text{NTIME}(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).)$$

Example 2.10

- Reachability $\in NSPACE(\lg n)$ (This is easy.)
- Reachability $\in SPACE((\lg n)^2)$ (In Chapter 7.)



Exercises

 $2.8.1,\ 2.8.4,\ 2.8.6,\ 2.8.7,\ 2.8.8,\ 2.8.9,\ 2.8.10,\ 2.8.11$