
Fundamentals of Mathematics
Lecture 7: Asymptotics

Guan-Shieng Huang

National Chi Nan University, Taiwan

Spring, 2008

1 / 26

http://staffweb.ncnu.edu.tw/shieng/courses/Math962/Math962.htm
http://staffweb.ncnu.edu.tw/shieng/
http://www.ncnu.edu.tw

The Definition of Big-O Notation

Definition (Big O)

f(n) = O(g(n)) iff there exist constants c and n0 such that

|f(n)| ≤ c|g(n)| for all n ≥ n0 .

In this definition, observe the following implications:

1 We only care about the behaviors of f and g when n is very large.
(n0)

2 A constant coefficient is ignored. (c)

3 g is an upper bound.

2 / 26

The Concept of an ‘Upper Bound’

Definition (N. G. de Bruijn’s L-notation)

L(n) stands for a number whose absolute value ≤ n.

1 + L(5) = L(6), L(2)L(3) = L(6), L(2) + L(3) = L(5), eL(5) = L(e5).
But L(5)− L(3) = L(8).
Let a = L(5) and b = L(6). We cannot conclude that a < b, |a| < |b|, or
even L(a) = L(b).

3 / 26

n→∞

1000 + 2000n = O(n2) .

Hence for small n, f(n) = O(g(n)) may not imply |f(n)| ≤ |g(n)|.

4 / 26

The Constant Coefficient c

2000n = O(n). However, 2000n 6≤ n for all n.

5 / 26

One-Way Equality

f(n) = O(g(n)) cannot be written as O(g(n)) = f(n).

n = O(n2),O(n2) = n2, but n 6= n2 .

6 / 26

The meaning of ‘=’ in Big O

O(g(n)) stands for the set of all functions f(n) such that
|f(n)| ≤ c|g(n)| for all n ≥ n0 for some c and n0.

f(n) = O(g(n)) means f(n) ∈ O(g(n)).
O(f(n)) = O(g(n)) means O(f(n)) ⊆ O(g(n)).

Let S and T be two sets of functions of n.

S + T := {f(n) + g(n)| f(n) ∈ S and g(n) ∈ T}

S − T , ST , S/T ,
√
S, eS , lnS are defined similarly.

=⇒ O(f(n)) + O(g(n)) is defined accordingly.

7 / 26

Example

n2

3 + O(n2) = O(n3) means

S1 = {n
2

3
+ f1(n)| f1(n) ∈ O(n2)}

S2 = {f2(n)| f2(n) ∈ O(n3)}

and S1 ⊆ S2.

8 / 26

Common Errors I

1 f(n) = O(n) and g(n) = O(n2) =⇒ f(n) ≤ g(n).

2 1 + 2 + 3 + · · ·+ n = O(n) + O(n) + 3 + · · ·+ n
= O(n) + 3 + 4 + · · ·+ n = · · · = O(n).
Or, prove 1 + 2 + 3 + · · ·+ n = O(n) by induction:

Basis: n = 1. 1 = O(1) holds.
Induction: Assume the assertion holds when n = k.

1 + 2 + · · ·+ k + (k + 1) = O(k) + (k + 1) = O(k + 1).

9 / 26

Common Errors II

3 For any two functions f(n) and g(n), either f(n) = O(g(n)) or
g(n) = O(f(n)).

Let f(n) =
{

0 when n is odd
1 when n is even

g(n) =
{

1 when n is odd
0 when n is even

Or, let f(n) = sin(n) and g(n) = cos(n).

4 f(n) = O(g(n)) =⇒ ef(n) = O(eg(n)).
Let f(n) = lnn, g(n) = 1

2 lnn. Then ef(n) = n, eg(n) =
√
n, but

n 6= O(
√
n).

10 / 26

Common Errors III

5 f(n) = O(g(n)) =⇒ lg f(n) = O(lg g(n)).

Let f(n) = 21+ 1
n , g(n) = 2

1
n . Then lg f(n) = 1 + 1

n , lg g(n) = 1
n ,

but 1 + 1
n 6= O(1

n).

6 f(n) = O(1) =⇒ f(n) is a constant function.
cos(n) = O(1).

11 / 26

Other Asymptotic Notations

1 Ω: lower bound (omega)
f(n) = Ω(g(n)) iff g(n) = O(f(n)).

2 Θ: at the same growth rate (theta)
f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n)).

3 o: (little oh)
f(n) = o(g(n)) iff |f(n) ≤ ε|g(n)| for all n ≥ nε, for all constants
ε > 0.
Or, we write f(n) ≺ g(n).

4 ω: (little omega)
f(n) = ω(g(n)) iff g(n) = o(f(n)).

5 ∼: asymptotic to
f(n) ∼ g(n) iff f(n) = g(n) + o(g(n)).

Remark

f(n) = Õ(g(n)) means f(n) = O(g(n) lgk g(n)) for some k ∈ N.

12 / 26

How to Determine the Asymptotic Relationship Between
Functions

1 f(n) = O(g(n) if limn→∞ |f(n)
g(n) | ≤ c for some constant c.

2 f(n) = Θ(g(n) if limn→∞ |f(n)
g(n) | ≤ c and limn→∞ | g(n)

f(n) | ≤ c.

3 f(n) = o(g(n)) iff limn→∞
f(n)
g(n) = 0.

4 f(n) ∼ g(n) iff limn→∞
f(n)
g(n) = 1.

5 f(n) = O(g(n) iff lim supn→∞ |
f(n)
g(n) | ≤ c for some constant c.

13 / 26

Useful Properties

1 f(n) = o(g(n)) (or, f(n) ≺ g(n)) =⇒ f(n) = O(g(n)).

2 f(n) ∼ g(n) =⇒ f(n) = Θ(g(n)).

14 / 26

Useful Patterns

1 nα ≺ nβ iff α < β
nα = O(nβ) iff α ≤ β

2 lgk n ≺ nε for any constant k > 0 and ε > 0.

3 nk ≺ cn for any constants k and c > 1.

4 f1(n) ≺ g1(n) and f2(n) ≺ g2(n) =⇒ f1(n)f2(n) ≺ g1(n)g2(n).

A hierarchy:

1 ≺ lg lg n ≺ lg n ≺ nε ≺ nc ≺ nlgn ≺ cn ≺ n! ≺ nn ≺ ccn

where 0 < ε < 1 < c.

15 / 26

Example

What is the growth rate of e
√

lgn?
ef(n) ≺ eg(n) iff limn→∞ (f(n)− g(n)) = −∞.
1 ≺ f(n) ≺ g(n) =⇒ e|f(n)| ≺ e|g(n)|.

∵ 1 ≺ lg lg n ≺
√

lg n ≺ ε lg n

∴ lg n ≺ e
√

lgn ≺ nε .

16 / 26

Big-O Manipulation I

1 nm = O(nm
′
) when m ≤ m′.

O(f(n)) + O(g(n)) = O(|f(n)|+ |g(n)|).

Hence n3

3 + n2

2 + n
6 = O(n3) + O(n3) + O(n3) = O(n3).

2 f(n) = O(f(n));
c ·O(f(n)) = O(f(n)) if c is a constant; O(O(f(n))) = O(f(n));
O(f(n))O(g(n)) = O(f(n)g(n));
O(f(n)g(n)) = f(n)O(g(n)) = O(f(n))O(g(n)).

3 O(f(n)2) = O(f(n))2

Hence we can write O(lg n)2 instead of O((lg n)2), but not O(lg n)−1

instead of O((lg n)−1).

17 / 26

Big-O Manipulation II

4 ln(1 + O(f(n))) = O(f(n)) if f(n) ≺ 1.

|ln(1 + x)| = |x
(

1− x

2
+
x2

3
− · · ·

)
|

≤ |x(1 +
c

2
+
c2

3
+ · · ·)| = O(x)

when |x| ≤ c < 1 for some constant c.

5 exp(O(f(n))) = 1 + O(f(n)) when f(n) = O(1).

exp(x) = 1 + x

(
x

2!
+
x2

3!
+ · · ·

)
= 1 + x ·O(1) when x = O(1)
= 1 + O(x)

18 / 26

Big-O Manipulation III

6 (1 + O(f(n)))O(g(n)) = 1 + O(f(n)g(n)) if f(n) ≺ 1 and
f(n)g(n) = O(1).

(1 + O(f(n)))O(g(n)) = exp
(

ln(1 + O(f(n)))O(g(n))
)

= exp (O(g(n)) ln(1 + O(f(n))))
= exp (O(g(n))O(f(n)))
= 1 + O(f(n)g(n))

19 / 26

The Analysis of Algorithms

the time complexity of an algorithm

the time complexity of a problem

the analysis of the time complexity of an algorithm

P : a problem

A: an algorithm for solving P

x : an instance of P

20 / 26

Complexity of Algorithms I

the time complexity of A is O(f(n)):
for any x with |x| = n, the execution time of A(x) is O(f(n)).
This is also called the worst-case time complexity of A.

the time complexity of A is Ω(f(n)):
for any x with |x| = n, the execution time of A(x) is Ω(f(n)).

the worst-case time complexity of A is Θ(f(n)):
the time complexity of A is O(f(n)) and for any n, there exists x
with |x| = n such that the execution time of A(x) is Ω(f(n)).

Remark

People often use O(f(n)) instead of Θ(f(n)) when refer to the worst-case
time complexity of an algorithm.

21 / 26

Complexity of Problems

the time complexity of P is O(f(n)):
there exists an algorithm whose time complexity is O(f(n))
the time complexity of P is Ω(f(n)):
any algorithm that solves P must have worst-case time complexity
Ω(f(n))
the time complexity of P is Θ(f(n)): the lower bound and upper
bound match

22 / 26

Worst-Case Time Complexity

Only care about the hardest instances in a problem

23 / 26

Average-Case Time Complexity

Care about the average-behavior of an algorithm

24 / 26

Discussion

Is big O a good choice in the analysis of algorithm?

Why do we usually analyze an algorithm by worst-case analysis?

The time complexity of a problem depends on the model of
computation.

Random-Access Machine
Turing Machine

What is an algorithm?

25 / 26

References

References

R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd
Edition, Addison-Wesley, 1994.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press, 2003.

26 / 26

	References

