Fundamentals of Mathematics
Lecture 7: Asymptotics

Guan-Shieng Huang
National Chi Nan University, Taiwan

Spring, 2008

1/26

http://staffweb.ncnu.edu.tw/shieng/courses/Math962/Math962.htm
http://staffweb.ncnu.edu.tw/shieng/
http://www.ncnu.edu.tw

-
The Definition of Big-O Notation

Definition (Big O)
f(n) = O(g(n)) iff there exist constants ¢ and ng such that

lf(n)] <clg(n)] foralln>ng .

In this definition, observe the following implications:
@ We only care about the behaviors of f and g when n is very large.
(no)
@ A constant coefficient is ignored. (¢)

© g is an upper bound.

2/26

R —
The Concept of an ‘Upper Bound’

Definition (N. G. de Bruijn's L-notation) J

L(n) stands for a number whose absolute value < n.

14 L(5) = L(6), L(2)L(3) = L(6), L(2) + L(3) = L(5), e"® = L(¢?).
But L(5) — L(3) = L(8).

Let @ = L(5) and b = L(6). We cannot conclude that a < b, |a| < |b], or
even L(a) = L(b).

3/26

1000 + 2000n = O(n?) .
Hence for small n, f(n) = O(g(n)) may not imply |f(n)| < |g(n)|.

4/26

]
The Constant Coefficient ¢

2000n = O(n). However, 2000n £ n for all n.

5/26

-
One-Way Equality

fn)

O(g(n)) cannot be written as O(g(n)) = f(n).

n=0(n?),0n? =n% butn#n? .

6 /26

-
The meaning of ‘="in Big O

@ O(g(n)) stands for the set of all functions f(n) such that
|f(n)| < ¢lg(n)] for all n > ng for some ¢ and nyg.

o f(n) = O(g(n)) means f(n) € O(g(n)).
O(f(n)) = O(g(n)) means O(f(n)) € O(g(n)).

@ Let S and T be two sets of functions of n.
S+T:={f(n)+g(n)| f(n) € Sandg(n) e T}

S —T, ST, S/T, /S, e®, InS are defined similarly.
= O(f(n)) + O(g(n)) is defined accordingly.

Example

%2 + O(n?) = O(n®) means

S1= % +] Ailn) € OW?)

Sa = {fa(n)| fa(n) € O(n®)}
and S7 C Ss.

26

R —
Common Errors |

@ f(n) =0(n) and g(n) = O(n*) = f(n) < g(n).
@1+24+3+---+n=0(n)+0(n)+3+---+n
=0n)+3+4+---4+n=---=0(n).
Or, prove 1 +2+ 3+ --- +n = O(n) by induction:
e Basis: n=1. 1 = 0(1) holds.
o Induction: Assume the assertion holds when n = k.

1424 4+k+(k+1)=0(k) + (k+1) =0k +1).

9/26

R —
Common Errors Il

@ For any two functions f(n) and g(n), either f(n) = O(g(n)) or
g9(n) = O(f(n)).

when n is odd
when n is even

Let 1) = {

g(n) = {

Or, let f(n) =sin(n) and g(n) = cos(n).

@ f(n)=0(g(n)) = /" =0(es™).
Let f(n) =1Inn, g(n) = 3Inn. Then e =n, 9 = /0, but
n# 0(Vn).

when n is odd
when n is even

O~ = O

10/26

R —
Common Errors Il

@ f(n) =0(g(n)) = lgf(n) = O(gg(n)).
Let f(n) =2""w, g(n) =2%. Thenlg f(n) =1+ L, 1gg(n) =
but 1+ 1+ # O(;).

Q@ f(n) =0(1) = f(n) is a constant function.
cos(n) = O(1).

3=

11/26

-
Other Asymptotic Notations

QO Q: lower bound (omega)
f(n) = Qg(n)) iff g(n) = O(f(n)).
@ O: at the same growth rate (theta)
f(n) = O(g(n)) iff f(n) =0(g(n)) and f(n) = Q(g(n)).
© o: (little oh)
f(n) =o(g(n)) iff |f(n) < e€|lg(n)| for all n > n,, for all constants
€ > 0.
Or, we write f(n) < g(n).
O w: (little omega)
f(n) = w(g(n)) iff g(n) = o(f(n)).
© ~: asymptotic to

f(n) ~ g(n) iff f(n) = g(n) +o(g(n)).
Remark
f(n) = O(g(n)) means f(n) = O(g(n)1g* g(n)) for some k € N. J

How to Determine the Asymptotic Relationship Between
Functions

Q f(n) =0O(g(n) if lim,]LZN < ¢ for some constant c.

Q@ f(n) = O(g(n) if lim,_s0 |f<;;§| < cand limy, oo |45 ”)| <e
@ f(n) = o(g(n)) iff limy, oo L} = 0.

Q f(n) ~g(n) iff lim,_ % =1.

@ f(n) =0(g(n) iff imsup,,_, \g()] < ¢ for some constant c.

13 /26

Useful Properties

14 /26

R —
Useful Patterns

Qn<nfiffa<p

n® = 0P iff a < B
@ lg¥n < n¢ for any constant k& > 0 and € > 0.
@ nF < ¢ for any constants k and ¢ > 1.

Q fi(n) < gi(n) and fo(n) < g2(n) = fi(n)fa(n) < g1(n)g2(n).
A hierarchy:

1<lglgn <lgn <n<n®<nB" <" <nl <n" <"

where 0 <e<1<e.

15/26

Example
What is the growth rate of evV2"?
ef () < 9 iff lim,, oo (f(n) — g(n)) =
1< f(n) < g(n) = elfl < els®I,
1 <lglgn < /lgn < elgn
Slgn < eViEn < pe

16

26

-
Big-O Manipulation |

Q@ n™ =0(n") when m <m'.

O(f(n)) + O(g(n)) = O(|f(n)| + g(n)])-

Hence % + = 4+ % — O(n?) + O(n®) + O(n?) = O(n?)
@ f(n) =0(f(n));

O(f(n)g(n)) = f(n)O(g(n)) = O(f(n))O(g(n)).

@ O(f(n)*) = O(f(n))®
Hence we can write O(lgn)? instead of O((Ign)?), but not O(lgn)~!
instead of O((Ign)~1).

17 /26

-
Big-O Manipulation [l

Q In(1+0O(f(n))) = O(f(n)) if f(n) < 1.
r 22
In(1+2)] = \x<1_+_...>,
< |CL’(1+E+*+...)|:O($)

when |z| < ¢ < 1 for some constant c.

Q exp(O(f(n))) =1+ O(f(n)) when f(n) = O(1).

P
exp(z) = 1+x< +§+)
= 142-0(1) whenz=0(1)

= 14 0(x)

18 /26

-
Big-O Manipulation IlI

0 (1+0(f(n)°UM) =14+ 0(f(n)g(n)) if f(n) <1 and
f(n)g(n) = O(1).

(L+O(f()) W) = exp

= exp

/N

In(1 + O((n))) %"
O(g(n)) In(1 4 O(f(n))))
- o O(g(n))O((n)))

= 1+0(f(n)g(n))

o~ o~

19/26

-
The Analysis of Algorithms

the time complexity of an algorithm

the time complexity of a problem

(]

the analysis of the time complexity of an algorithm

P: a problem

A: an algorithm for solving P

@ x : an instance of P

20/26

-
Complexity of Algorithms |

o the time complexity of A is O(f(n)):
for any with |z| = n, the execution time of A(x) is O(f(n)).
This is also called the worst-case time complexity of A.

@ the time complexity of A is Q(f(n)):
for any = with |z| = n, the execution time of A(x) is Q(f(n)).

@ the worst-case time complexity of A is ©(f(n)):
the time complexity of A is O(f(n)) and for any n, there exists =
with || = n such that the execution time of A(z) is Q(f(n)).

Remark

People often use O(f(n)) instead of ©(f(n)) when refer to the worst-case
time complexity of an algorithm.

21/26

-
Complexity of Problems

@ the time complexity of P is O(f(n)):
there exists an algorithm whose time complexity is O(f(n))
@ the time complexity of P is Q(f(n)):
any algorithm that solves P must have worst-case time complexity

Q(f(n))

@ the time complexity of P is ©(f(n)): the lower bound and upper
bound match

22/26

-
Worst-Case Time Complexity

@ Only care about the hardest instances in a problem

23 /26

-
Average-Case Time Complexity

@ Care about the average-behavior of an algorithm

24 /26

R —
Discussion

@ Is big O a good choice in the analysis of algorithm?

@ Why do we usually analyze an algorithm by worst-case analysis?

@ The time complexity of a problem depends on the model of
computation.

o Random-Access Machine
e Turing Machine

@ What is an algorithm?

25 /26

References

[R.L.Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd

Edition, Addison-Wesley, 1994.

[T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, MIT Press, 2003.

26 /26

	References

