
Theory of Computation

Chapter 2

Guan-Shieng Huang

Feb. 24, 2003
Feb. 19, 2006

0-0

'

&

$

%

Turing Machine

K
⊲0111000a · · · 01bb ⊔ ⊔ ⊔ ⊔ · · · · · ·

1

'

&

$

%

Definition of TMs

A Turing Machine is a quadruple M = (K, Σ, δ, s), where

1. K is a finite set of states; (line numbers)

2. Σ is a finite set of symbols including ⊔ and ⊲; (alphabet)

3. δ : K × Σ→ (K ∪ {h,“yes”,“no”})× Σ× {←,→,−}, a transition

function; (instructions)

4. s ∈ K, the initial state. (starting point)

2

'

&

$

%

• h: halt, “yes”:accept, “no”: reject

(terminate the execution)

• →: move right, ←: move left, −: stay

(move the head)

• ⊔: blank, ⊲: the boundary symbol

3

'

&

$

%

• δ(q, σ) = (p, ρ, D)

While reading σ at line q, go to line p and write out ρ on the

tape. Move the head according to the direction of D.

• δ(q, ⊲) = (p, ρ,→), to avoid crash.

4

'

&

$

%

Example 2.1

5

'

&

$

%

Remark

x: input of M

M(x) =



























“yes”

“no”

y if M entered h

ր if M never terminates

6

'

&

$

%

Example 2.2

(n)2 → (n + 1)2 if no overflow happens.

7

'

&

$

%

Example 2.3 — Palindrome

8

'

&

$

%

Turing Machines as Algorithms

• L ⊆ (Σ− {⊔, ⊲})∗, a language

• A TM M decides L if for all string x,






x ∈ L⇒M(x) = “yes”

x 6∈ L⇒M(x) = “no”.

• A TM M accepts L if for all string x,






x ∈ L⇒M(x) = “yes”

x 6∈ L⇒M(x) =ր .

9

'

&

$

%

• If L is decided by some TM, we say L is recursive.

• If L is accepted by some TM, we say L is recursively

enumerable.

10

'

&

$

%

Proposition 2.1

If L is recursive, then it is recursively enumerable.

11

'

&

$

%

Representation of mathematical objects: (data structure)

1. graphs, sets, numbers, ...

2. All acceptable encodings are polynomially related.

(a) binary, ternary

(b) adjacency matrix, adjacency list

However, unary representation of numbers is an exception.

12

'

&

$

%

k-string Turing Machines

A k-string Turing machine is a quadruple (K, Σ, δ, s) where

1. K, Σ, s are exactly as in ordinary Turing machines;

2. δ : K × Σk → (K ∪ {h,“yes”,“no”})× (Σ× {←,→,−})k;

13

'

&

$

%

An Example

14

'

&

$

%

1. If for a k-string Turing machine M and input x we have

(s, ⊲, x, ⊲, ǫ, . . . , ⊲, ǫ)
Mt

−→ (H, w1, u1, . . . , wk, uk)

for some H ∈ {h,“yes”,“no”}, then the time required by M on

input x is t.

2. If for any input string x of length |x|, M terminates on input x

within time f(|x|), we say f(n) is a time bound for M .

(worst case analysis)

15

'

&

$

%

TIME(f(n)): the set of all languages that can be decided by TMs

in time f(n).

Theorem 2.1

Given any k-string TM M operating within time f(n), we can

construct a TM M ′ operating within time O(f(n)2) and such

that, for any input x, M(x) = M ′(x).

(by simulation)

16

'

&

$

%

Linear Speedup

Theorem 2.2

Let L ∈ TIME(f(n)). Then, for any ǫ > 0, L ∈ TIME(f ′(n)),

where f ′(n) = ǫ · f(n) + n + 2.

Definition

P =
⋃

k≥1 TIME(nk).

17

'

&

$

%

Space Bounds

A k-string TM with input and output is an ordinary k-string TM

s.t.

1. the first tape is read-only;

(Input cannot be modified.)

2. the last tape is write-only.

(Output cannot be wound back.)

18

'

&

$

%

Proposition

For any k-string TM M operating with time bound f(n) there is a

(k + 2)-string TM M ′ with input and output, which operates

within time bound O(f(n)).

19

'

&

$

%

Space Bound for TM

Suppose that, for a k-string TM M and input x,

(s, ⊲, x, . . . , ⊲, ǫ)
M

∗

−→ (H, w1, u1, . . . , wk, uk)

where H ∈ {h,“yes”,“no”} is a halting state.

1. The space required by M on input x is
∑

k

i=1
|wiui|.

2. If M is a machine with input and output, then the space required by

M on input x is
∑

k−1

i=2
|wiui|.

20

'

&

$

%

1. We say that Turing machine M operates within space bound

f(n) if, for any input x, M requires space at most f(|x|).

2. A language L is in the space complexity class SPACE(f(n)) if

there is a TM with I/O that decides L and operates within

space bound f(n).

3. Define L = SPACE(lg(n)).

21

'

&

$

%

Theorem 2.3

Let L be a language in SPACE(f(n)). Then, for any ǫ > 0,

L ∈ SPACE(2 + ǫ · f(n)).

22

'

&

$

%

Random Access Machines

Input: (i1, i2, . . . , in)

Output: r0 (accumulator)

Memory: r0, r1, r2, . . . (infinite memory)

k: program counter

Three address modes: (for x)

1. j: direct;

2. ↑ j: indirect;

3. = j: immediate.

(arbitrary large number)

23

'

&

$

%
24

'

&

$

%

Theorem 2.5

If a RAM program Π computes a function φ in time f(n), then

there is a 7-string TM which computes φ in time O(f(n)3).

(by simulation)

25

'

&

$

%

Nondeterministic Machines

A nondeterministic TM is a quadruple N = (K,Σ, ∆, s), where

1. K, Σ, s are as in ordinary TM;

2. ∆ ⊆ (K × Σ)× [(K ∪ {h,“yes”,“no”})× Σ× {←,→,−}].

26

'

&

$

%
27

'

&

$

%

1. N decides a language L if for any x ∈ Σ∗, x ∈ L if and only if

(s, ⊲, x)
N∗

−→ (“yes”, w, u) for some strings w and u.

2. An input is accepted if there is some sequence of

nondeterministic choice that results in “yes”.

28

'

&

$

%

N decides L in time f(n) if

1. N decides L;

2. for any x ∈ Σ∗, if (s, ⊲, x)
Nk

−→ (“yes”, w, u), then k ≤ f(|x|).

Let NTIME(f(n)) be the set of languages decided by NTMs within

time f .

29

'

&

$

%

Let NP =
⋃

k≥1 NTIME(nk).

We have

P ⊆ NP .

30

'

&

$

%

Example 2.9

TSP (D) ∈ NP

1. Write out arbitrary permutation of 1, . . . , n.

2. Check whether the tour indicated by this permutation is less

than the distance bound.

31

'

&

$

%

Theorem 2.6

Suppose that language L is decided by a NTM N in time f(n).

Then it is decided by a 3-string DTM M in time O(cf(n)), where

c > 1 is some constant depending on N .

(NTIME(f(n)) ⊆
⋃

c≥1 TIME(cf(n)).)

32

'

&

$

%

Example 2.10

• Reachability ∈ NSPACE(lg n) (This is easy.)

• Reachability ∈ SPACE((lg n)2) (In Chapter 7.)

33

'

&

$

%

Why employ nondeterminism?

34

'

&

$

%

Exercises

2.8.1, 2.8.4, 2.8.6, 2.8.7, 2.8.8, 2.8.9, 2.8.10, 2.8.11

35

