Theory of Computation

Homework \#1
CSIE210072
National Chi Nan University

Oct 26, 2007
Problem 1 Let A be the set of strings generated by the following contextfree language:

$$
S \rightarrow(S)|S S| \epsilon
$$

where ϵ is the empty string. That is, A contains the set of all paired parentheses such as $(())$ or ()$(())$. Prove that A can be decided by a deterministic multi-string Turing machine in log space. (Note: You can just sketch the idea of the machine. No transition function is required here.)

Problem 2 Let $B=\{<M>\mid L(M)$ is finite $\}$ where $<M>$ is the encoding of machine M and $L(M)$ is the language accepted by M. Show that B is undecidable.

Problem 3 Let \bar{H} be $\{M ; x \mid M(x)$ will not terminate $\}$. Show that \bar{H} is not recursively enumerable.

Problem 4 Let L_{1} and L_{2} be recursive. Let

$$
L_{3}=\left\{x y \mid x \in L_{1} \text { and } y \in L_{2}\right\} .
$$

Show that L_{3} is recursive.

