Theory of Computation

Final Examination
210072
National Chi Nan University

Jan 11, 2008
Problem 1 (20 points) Show that $\operatorname{SPACE}(n)$ is not closed under logspace reductions.

Problem 2 (20 points) Given an undirected graph $G=(V, E)$, a subcomplete graph of G is called a clique. Let P be the following problem: It takes a graph G and an integer K as the input, and we want to determine if there is a clique in G with at least K nodes. Show that the problem P is NP-complete

Problem 3 (20 points) Show that $L \varsubsetneqq E X P$ where L is the complexity class that takes log-space and $E X P=\bigcup_{k \geq 1} \operatorname{TIME}\left(2^{n^{k}}\right)$ is the exponential time.

Problem 4 (20 points) Given two clauses $C_{1}=A \vee x$ and $C_{2}=B \vee \neg x$ where A and B are disjunctions of literals containing neither x nor $\neg x$. The resolvent of C_{1} and C_{2} is defined as $A \vee B$. Determine whether or not the following statement is true under NAESAT:
$C_{1} \wedge C_{2}$ is satisfiable if and only if $C_{1} \wedge C_{2} \wedge(A \vee B)$ is satisiable.
Problem 5 (20 points) Show that there exists a problem that is P-complete under log-space reductions. (Just provide enough evidence to demonstrate that you understand this problem since we open book in this exam.)

