Theory of Computation

Midterm Examination
210072
National Chi Nan University

Nov 23, 2007
Problem 1 (20 points) Let L be
$\left\{\left\langle M_{1}\right\rangle ;\left\langle M_{2}\right\rangle \mid\right.$ the outputs of M_{1} and M_{2} are the same for all inputs $\}$.
Show that L is not recursively enumerable.
Problem 2 (20 points) Determine whether the following Boolean formula is a tautology:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \Rightarrow\left(x_{1} \vee x_{2} \vee \neg x_{4} \vee \neg x_{5}\right) .
$$

Problem 3 (20 points) Show that $n^{\frac{1}{n}}=O(1)$ as $n \rightarrow \infty$.
Problem 4 (20 points) Let L_{1} and L_{2} be two non-recursive languages. Determine (i.e. prove or disprove) whether the following claims are true or false.
a. $L_{1} \cup L_{2}$ cannot be recursive.
b. $L_{1} \cap L_{2}$ may be recursive.

