Theory of Computation

Midterm Examination
CSIE210039
National Chi Nan University

Due Date: June 30, 2007

Spring 2003

Problem 1 Given any string w, let w^{R} be the reverse string of w. For example, if w is $a_{1} a_{2} a_{3} a_{4}$ where $a_{i} s$ are characters, then w^{R} is $a_{4} a_{3} a_{2} a_{1}$. Let $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$. Prove that there is a Turing machine that can decide whether a string from $\{0,1\}^{*}$ belongs to L.

Problem 2 For each of the following cases, describe one computational problem that belongs to it.
a. NP-complete;
b. P-complete;
c. NL-complete.

Problem 3 Prove that there exists a language with alphabet $\{0,1\}$ that is not decidable.

Problem 4 Which function grows faster? (a) $2^{\sqrt{\log n}}$; (b) n; (c) $(\log n)^{2003}$. Justify your answer.

Problem 5 Let M be a probabilistic polynomial time Turing machine and let C be a language where, for some fixed $0<\epsilon_{1}<\epsilon_{2}<1$,
a. $w \notin C$ implies $\operatorname{Pr}[M$ accepts $w] \leq \epsilon_{1}$, and
b. $w \in C$ implies $\operatorname{Pr}[M$ accepts $w] \geq \epsilon_{2}$.

Show that $C \in B P P$. (Note: The class $B P P$ is the class of sets computable by probabilistic polynomial time Turing machines that have the error probability bounded by a constant $c<1 / 2$.)

Spring 2006
Problem 6 Suppose that Reachability can be solved in time $O(\lg n)$. Based on this assumption, show that $L=N L$. (Note: Reachability asks "Given any directed graph with n nodes, is there a path from node 1 to node n ?" Also, L stands for deterministic log-space and $N L$ stands for nondeterministic log-space.)

Problem 7 Cook's Theorem states that SAT is NP-complete. Explain why Cook cannot prove his theorem by using reduction. (Note: You have to explain how to use reduction to prove the NP-completeness of a problem.)

Problem 8 Let $L=\{M ; x ; y \mid M(x)=y\}$ where M is the description of a Turing machine and x and y are strings. Show that L is not recursive.

Problem 9 Show that Validity is coNP-complete, based on the fact that SAT is NP-complete. (Note: Validity asks whether a Boolean formula is true for all appropriate truth assignments.)

Problem 10 How many number of distinct Boolean functions with n variables? Find a closed form for it and explain why.

Fall 2006
Problem 11 Let H be the language $\{M ; x: M(x) \neq \nearrow\}$. Prove that H is not recursive.

Problem 12 Let ϕ be a conjunction of Horn clauses. Suppose that truth assignments T_{1} and T_{2} satisfy ϕ. Now we define T_{3} be the the assignment that $T_{3}(x)$ is true iff $T_{1}(x)$ and $T_{2}(x)$ are both true, for all appropriate variables x. Show that T_{3} also satisfies ϕ.
Problem 13 Explain the idea of "closed under reduction" in the theory of reduction and completeness. Show that $\operatorname{TIME}\left(n^{2}\right)$ is not closed under log-space reduction. (Hint: Try to apply the Time Hierarchy Theorem.)

Problem 14 Explain "pseudo-polynomial time algorithm." Let A be an $N P$-complete decision problem such that any instance of length n is restricted to contain integers of size at most $p(n)$, a polynomial in n. Show that if A has pseudo-polynomial time algorithm, then $P=N P$.

Spring 2007
Problem 15 In the problem Satisfiability, we are given a set of clauses and want to determine if there is a truth assignment that can satisfy all given clauses. Show that Satisfiability can be solved in linear space.

Problem 16 Let K be $\left\{<M, w, 1^{n}>\mid\right.$ NTM M accepts w in time $\left.n\right\}$ where $<\cdots>$ is the encoding of its arguments and NTM stands for nondeterministic Turing machine. Show that K is NP-complete.
Problem 17 In Reachability, we are given a directed graph whose nodes are labelled by $1, \ldots, n$ and ask to determine if there is a path from node 1 to node n in that graph. Show how Reachability can be reduced to Satisfiability.
Problem 18 Based on the assumption that $P=N P$, show that $N P=c o N P$.

