Theory of Computation

Midterm Examination
CSIE210039
National Chi Nan University

April 24, 2007
Problem 1 (25 points) Determine the satisfiability of the following set of clauses:

$$
\begin{array}{r}
\neg x \vee \neg y, \neg y \vee \neg z, \neg z \vee \neg x, \\
x \vee \neg w, y \vee \neg w, z \vee \neg w, x \vee y \vee z \vee w .
\end{array}
$$

Problem 2 (25 points) Show that if both languages L and \bar{L} are recursively enumerable, then L is recursive.

Problem 3 (25 points) Let A be the set of strings generated by the following context-free language:

$$
S \rightarrow(S)|S S| \epsilon
$$

where ϵ is the empty string. That is, A contains the set of all paired parentheses such as $(())$ or ()$(())$. Prove that A can be decided by a deterministic multi-string Turing machine in log space. (Note: You can just sketch the idea of the machine. No transition function is required here.)

Problem 4 (25 points) Let $B=\{<M>\mid L(M)$ is finite $\}$ where $<M>$ is the encoding of machine M and $L(M)$ is the language accepted by M. Show that B is undecidable.

