Theory of Computation

Midterm Examination
CSIE210039
National Chi Nan University

May 2, 2006
Problem 1 (20 points) Let \bar{H} be $\{M ; x \mid M(x)$ will not terminate $\}$. Show that \bar{H} is not recursively enumerable.

Problem 2 (20 points) Show that there exists a Boolean function that cannot be represented by the conjunction of a set of Horn clauses. A Boolean function F is represented by the conjunction of a set of clauses C iff F and C take the same variables and the output of F coincides with the truth value of C for any appropriate assignments.

Problem 3 (20 points) Let L_{1} and L_{2} be recursive. Let

$$
L_{3}=\left\{x y \mid x \in L_{1} \text { and } y \in L_{2}\right\} .
$$

Show that L_{3} is recursive.
Problem 4 (20 points) Define $\operatorname{NOR}(x, y)=\neg(x \vee y)$. Construct a valid expression (or tautology) in terms of $N O R$ alone. (Note: Variables are also allowed, but constants T and \perp are forbidden.)

Problem 5 (20 points) Explain why computer scientists employ big- O notation to analyze algorithms.

