Theory of Computation
 Chapter 11

Guan-Shieng Huang

June 2, 2005

Randomized Computation

1. Can random numbers help us solve computational problems?
2. In a randomized algorithm, we may make the following statement:
(a) Given any number $n>2$, we can decide whether n is prime with high probability.

Types of Errors

- positive: to answer "yes" negative: to answer "no"
- true positive; true negative:

The answer coincides with the fact
false positive; false negative:
The answer is wrong

Example

1. Given $n=5$, suppose we have to answer if $n>4$.

If we answer "no", then this answer is a false negative.
If we answer "yes", then this answer is a true positive.
2. Suppose we have to answer if n is even.

Answer "yes" \Rightarrow false positive
Answer "no" \Rightarrow true negative

Monte Carlo Algorithm

A randomized algorithm that never appears false positive.

- If it answers "yes", then the answer must be correct.
- If it answers "no", then the answer may be wrong.
- With high probability that it can answer "yes" if it is really this case.

Symbolic Determinants

- Let A be an $n \times n$ matrix with each entry a multi-variate polynomial.
We want to determine whether the determinant of A is not a zero polynomial.
- $\operatorname{det} A=\sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}$ where $A=\left(a_{i, j}\right)_{n \times n}, \sigma(\pi)=1$ if π is an even permutation, -1 is π is odd.

$$
\operatorname{det} A=\sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right) \\
& =a_{1,1} a_{2,2} a_{3,3}+a_{2,1} a_{3,2} a_{1,3}+a_{3,1} a_{1,2} a_{2,3} \\
& -a_{1,1} a_{2,3} a_{3,2}-a_{1,2} a_{2,1} a_{3,3}-a_{1,3} a_{2,2} a_{3,1}
\end{aligned}
$$

- $\pi=[3,2,1]$ is an odd permutation.

$$
a_{1, \pi(1)} a_{2, \pi(2)} a_{3, \pi(3)}=a_{1,3} a_{2,2} a_{3,1}
$$

- $\pi=[2,3,1]$ is an even permutation.

$$
a_{1, \pi(1)} a_{2, \pi(2)} a_{3, \pi(3)}=a_{1,2} a_{2,3} a_{3,1}
$$

Gaussian elimination can solve "numerical determinants" easily. No body knows how to solve the symbolic determinants in polynomial time.

Randomized Algorithm for Symbolic Determinants

Assume there are m variables in A and the highest degree of each variable in the expansion is at most d.

1. Choose m random integers i_{1}, \ldots, i_{m} between 0 and $M=2 m d$.
2. Compute the determinant $\operatorname{det} A\left(i_{1}, \ldots, i_{m}\right)$ by Gaussian elimination.
3. If the result $\neq 0$, reply "yes".
4. If the result $=0$, reply "probably equal to 0 ".

Lemma 11.1 Let $p\left(x_{1}, \ldots, x_{m}\right)$ be a polynomial, not identically zero, in m variables each of degree at most d in it, and let $M>0$ be an integer. Then the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}_{M}^{m}$ such that $p\left(x_{1}, \ldots, x_{m}\right)=0$ is at most $m d M^{m-1}$.

Proof.

1. Induction on m. When $m=1$ the lemma says that no polynomial of degree $\leq d$ cam have more than d roots.
2. Suppose the result is true for $m-1$ variables.

Let the degree of x_{m} is $t \leq d$. We can rewrite $p\left(x_{1}, \ldots, x_{m}\right)$ as $q\left(x_{1}, \ldots, x_{m-1}\right) x_{m}^{t}+r\left(x_{1}, \ldots, x_{m-1}\right)$. Consider $x_{1}, \ldots x_{m-1}$ according to whether they can make $q\left(x_{1}, \ldots, x_{m-1}\right)=0$

$$
(m-1) d M^{m-2} \cdot M+M^{m-1} d \leq m d M^{m-1}
$$

Random Walks for 2SAT

1. Start with any truth assignment T.
2. Repeat the following steps r times.
(a) If there is no unsatisfied clause, Reply "Formula is satisfiable" and halt.
Else pick any unsatisfied clause. Flip the value of of any one of the literal inside this clause.
3. Reply "Formula is probably unsatisfiable".

Theorem Let $r=2 n^{2}$. Then this algorithm can find a satisfiable truth assignment with probability at least $\frac{1}{2}$ of the 2SAT formula is satisfiable.

Proof.

1. \hat{T} : a satisfying truth assignment
T : current truth assignment
2. $t(i)$: the expectation for the number of flipping if T differs from \hat{T} in exactly i values
3. $t(0)=0$

$$
\begin{aligned}
& t(i) \leq \frac{1}{2}(t(i-1)+t(i+1))+1 \\
& t(n) \leq t(n-1)+1
\end{aligned}
$$

4. Let $x(0)=0$

$$
\begin{aligned}
& x(i)=\frac{1}{2}(x(i-1)+x(i+1))+1 \\
& x(n)=x(n-1)+1 \\
& \text { Then } t(i) \leq x(i)=2 \text { in }-i^{2} \leq n^{2} .
\end{aligned}
$$

5. Let $r=2 n^{2}$. Then $\operatorname{Prob}\left[r \geq 2 n^{2}\right] \leq \frac{1}{2}$.

Lemma 11.2 (Markov Inequality) If x is a non-negative random variable, then for any $k>0, \operatorname{Prob}\left[x \geq k \mu_{x}\right] \leq \frac{1}{k}$ where μ_{x} is the expectation of x.

Proof.

$$
\mu_{x}=\sum_{i} i p_{i}=\sum_{i<k \mu_{x}} i p_{i}+\sum_{i \geq k \mu_{x}} i p_{i} \geq k \mu_{x} \operatorname{Prob}\left[x \geq k \mu_{x}\right] .
$$

$\therefore \operatorname{Prob}\left[x \geq k \mu_{x}\right] \leq \frac{1}{k}$.

Fermat Test

1. If n is prime, then $a^{n-1} \equiv 1(\bmod n)$ for all a not divided by n.
2. Hypothesis: n is not prime \Longrightarrow at least half of nonzero residues a can make $a^{n-1} \not \equiv 1(\bmod n)$
3. If it is true, we would have a polynomial Monte Carlo algorithm for testing whether n is composite. Unfortunately, it is false.

Square Roots Modulo a Prime

Consider $x^{2} \equiv a(\bmod p)$ where $p \geq 3$. Then exactly half of the nonzero residues have square roots.

Proof.

- Consider the squares of $1,2,3, \ldots, p-1$.
- They are exactly those numbers that have square roots.
- k and $p-k$ collapse after squaring.
- However, $x^{2} \equiv a$ has at most two roots, and in fact, either zero or two roots.

Lemma 11.3 If $a^{\frac{p-1}{2}} \equiv 1(\bmod p)$, then $x^{2} \equiv a$ has two roots. Otherwise, $a^{\frac{p-1}{2}} \equiv-1(\bmod p)$ and it has no roots.

Proof.

Let r be a primitive root for p. Then each nonzero residue $a \equiv r^{k}$ for some $k \geq 0$.

1. $k=2 j: a^{\frac{p-1}{2}} \equiv\left(r^{2 j}\right)^{\frac{p-1}{2}}=\left(r^{p-1}\right)^{j} \equiv 1$, and the square roots for a are r^{j} and $r^{j+\frac{p-1}{2}}$.
2. $k=2 j+1: a^{\frac{p-1}{2}}=\left(r^{2 j+1}\right)^{\frac{p-1}{2}}=r^{j(p-1)+\frac{p-1}{2}} \equiv r^{\frac{p-1}{2}} \equiv-1$ $(\bmod p)$, and it has no square roots.

Legendre Symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } a \text { has square root in } p \\
0 & \text { if } p \text { divides } a \\
-1 & \text { if } a \text { has no square root in } p
\end{array}\right.
$$

for prime numbers $p>2$.

Theorem $\quad\left(\frac{a}{p}\right)=a^{\frac{p-1}{2}} \bmod p$.

Corollary $\quad\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

Gauss's Lemma

$\left(\frac{q}{p}\right)=(-1)^{m}$ where $m=\left|\left\{i: 1 \leq i \leq \frac{p-1}{2}, q i \bmod p>\frac{p-1}{2}\right\}\right|$ and $p>2$.

Proof.

Consider

$$
q, 2 q, 3 q, \ldots, \frac{p-1}{2} \cdot q
$$

and

$$
-\frac{p-1}{2}, \ldots,-1,0,1, \ldots, \frac{p-1}{2} .
$$

Either k or $-k\left(1 \leq k \leq \frac{p-1}{2}\right)$ can be mapped by one number $q i$, but not both.

$$
q i \equiv-q j \quad(\bmod p) \Rightarrow q(i+j) \equiv 0 \quad(\bmod p) \Rightarrow p \mid i+j
$$

And no two numbers $q i$ and $q j$ can map the the same k

$$
q i \equiv q j \quad(\bmod p) \Rightarrow p \mid i-j
$$

$$
\begin{gathered}
\prod_{1 \leq i \leq \frac{p-1}{2}} q i=\left(\frac{p-1}{2}\right)!\cdot q^{\frac{p-1}{2}} \equiv(-1)^{m}\left(\frac{p-1}{2}\right)! \\
\therefore(-1)^{m} \equiv q^{\frac{p-1}{2}} \equiv\left(\frac{q}{p}\right) \quad(\bmod p)
\end{gathered}
$$

Legendre's Law of Reciprocity

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Proof.
1.

$$
\begin{aligned}
& 1+2+3+\cdots+\frac{p-1}{2} \equiv \sum_{i=1}^{\frac{p-1}{2}}\left(q i-p\left\lfloor\frac{q i}{p}\right\rfloor\right)+m p \quad(\bmod 2) . \\
\because & a>\frac{p-1}{2} \Rightarrow p-a=a+p-2 a \equiv a+p(\bmod 2)
\end{aligned}
$$

2.

$$
\therefore \sum_{i=1}^{\frac{p-1}{2}} i \equiv q \sum_{i=1}^{\frac{p-1}{2}} i-p \sum_{i=1}^{\frac{p-1}{2}}\left\lfloor\frac{q i}{p}\right\rfloor+m p \quad(\bmod 2)
$$

3.

$$
\begin{gathered}
\because p \equiv p \equiv 1 \quad(\bmod 2) \\
\therefore m \equiv \sum_{i=1}^{\frac{p-1}{2}}\left\lfloor\frac{q i}{p}\right\rfloor \quad(\bmod 2)
\end{gathered}
$$

4. No grid lies inside $(0,0)-(p, q)$. Hence,

$$
m+m^{\prime} \equiv \sum_{i=1}^{\frac{p-1}{2}}\left\lfloor\frac{q i}{p}\right\rfloor+\sum_{j=1}^{\frac{q-1}{2}}\left\lfloor\frac{p j}{q}\right\rfloor \equiv \frac{p-1}{2} \cdot \frac{q-1}{2} \quad(\bmod 2)
$$

5.

$$
\therefore\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{m} \cdot(-1)^{m^{\prime}}=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

Jacob's Symbol

$$
\left(\frac{M}{N}\right)=\left(\frac{M}{p_{1}}\right)\left(\frac{M}{p_{2}}\right) \cdots\left(\frac{M}{p_{n}}\right)
$$

if $N=p_{1} p_{2} \cdots p_{n}$ where p_{i} 's are odd primes (which may be the same).

Lemma 11.6

1. $\left(\frac{M_{1} M_{2}}{N}\right)=\left(\frac{M_{1}}{N}\right)\left(\frac{M_{2}}{N}\right)$ if $\left(M_{1} M_{2}, N\right)=1$
2. $\left(\frac{M+N}{N}\right)=\left(\frac{M}{N}\right)$
3. $\left(\frac{N}{M}\right)\left(\frac{M}{N}\right)=(-1)^{\frac{M-1}{2} \cdot \frac{N-1}{2}}$ if $(M, N)=1$ and M, N are odd.

Proof.

Let $M=q_{1} q_{2} \cdots q_{m}$ and $N=p_{1} p_{2} \cdots p_{m}$.

1. $\left(\frac{M_{1} M_{2}}{N}\right)=\prod_{i}\left(\frac{M_{1} M_{2}}{p_{i}}\right)=\prod_{i}\left(\frac{M_{1}}{p_{i}}\right) \prod_{j}\left(\frac{M_{2}}{p_{j}}\right)=\left(\frac{M_{1}}{N}\right)\left(\frac{M_{2}}{N}\right)$
2. $\left(\frac{M+N}{N}\right)=\prod_{i}\left(\frac{M+N}{p_{i}}\right)=\prod_{i}\left(\frac{M}{p_{i}}\right)=\left(\frac{M}{N}\right)$
3. $\left(\frac{M}{N}\right)\left(\frac{N}{M}\right)=\prod_{i, j}\left(\frac{q_{j}}{p_{i}}\right) \cdot \prod_{i, j}\left(\frac{p_{i}}{q_{j}}\right)=\prod_{i, j}\left[\left(\frac{q_{j}}{p_{i}}\right)\left(\frac{p_{i}}{q_{j}}\right)\right]$

$$
=\prod_{i, j}(-1)^{\frac{p_{i}-1}{2} \cdot \frac{q_{i}-1}{2}}=(-1)^{\sum_{i . j} \frac{p_{i}-1}{2} \frac{q_{j}-1}{2}}
$$

And $\sum_{i, j} \frac{p_{i}-1}{2} \frac{q_{j}-1}{2}=\sum_{j} \frac{p_{i}-1}{2} \sum_{j} \frac{q_{j}-1}{2}$, and $\frac{a-1}{2}+\frac{b-1}{2} \equiv \frac{a b-1}{2}(\bmod 2)$.
$\therefore \sum_{j} \frac{q_{j}-1}{2} \equiv \frac{M-1}{2} \quad(\bmod 2), \sum_{i} \frac{p_{i}-1}{2} \equiv \frac{N-1}{2} \quad(\bmod 2)$

Lemma

$$
\left(\frac{2}{M}\right)=(-1)^{\frac{M^{2}-1}{8}}
$$

Proof.

Let $M=q_{1} \cdots q_{m}$. We first show that $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$ for odd primes.
Consider $2,2 \times 2, \ldots, 2 i, \ldots, 2 \times \frac{p-1}{2}$ for $1 \leq i \leq \frac{p-1}{2}$. $2 i>\frac{p-1}{2} \Rightarrow i>\frac{p-1}{4}$

$$
\begin{aligned}
& \therefore m=\frac{p-1}{2}-\left\lfloor\frac{p-1}{4}\right\rfloor=\frac{p-1}{2}+\left\lceil-\frac{p-1}{4}\right\rceil \\
= & \left\lceil\frac{p-1}{2}-\frac{p-1}{4}\right\rceil=\left\lceil\frac{p-1}{4}\right\rceil \equiv \frac{p^{2}-1}{8}(\bmod 2)
\end{aligned}
$$

Lemma Given two integers M and N with $\ell=\lg M N$, $\operatorname{gcd}(M, N)$ and $\left(\frac{M}{N}\right)$ can be computed in $O\left(\ell^{3}\right)$ time.

Summary

1. $\left(\frac{M}{N}\right)=-\left(\frac{N}{M}\right)$ iff $M \equiv N \equiv 3(\bmod 4)$
2. $\left(\frac{2}{N}\right)=-1$ iff $N \equiv 3(\bmod 8)$ or $N \equiv 5(\bmod 8)$

Example

$$
\begin{gathered}
\left(\frac{163}{511}\right)=-\left(\frac{511}{163}\right)=-\left(\frac{22}{163}\right)=-\left(\frac{2}{163}\right)\left(\frac{11}{163}\right) \\
=\left(\frac{11}{163}\right)=-\left(\frac{163}{11}\right)=-\left(\frac{9}{11}\right)=-\left(\frac{11}{9}\right)=-\left(\frac{2}{9}\right)=-1
\end{gathered}
$$

Lemma 11.8 If $\left(\frac{M}{N}\right) \equiv M^{\frac{N-1}{2}}(\bmod N)$ for all $M \in \Phi(N)$, then N is a prime.

Proof.

Suppose N is composite.

1. $N=p_{1} p_{2} \cdots p_{k}$, the product of distinct primes.

Let r be a number such that $\left(\frac{r}{p_{1}}\right)=-1$,
$r \bmod p_{j}=1$ for $2 \leq j \leq k$.
Then $M^{\frac{N-1}{2}} \equiv\left(\frac{M}{N}\right) \equiv \prod\left(\frac{M}{p_{i}}\right)=-1(\bmod N)$.
Hence $M^{\frac{N-1}{2}} \equiv-1\left(\bmod p_{2}\right)$,
but $M^{\frac{N-1}{2}} \equiv 1^{\frac{N-1}{2}} \equiv 1\left(\bmod p_{2}\right)$.
2. Let $N=p^{2} m$ for some $p>2$ and $m>1$.

Let r be a primitive root for p^{2}. Then $\phi\left(p^{2}\right)=p(p-1) \mid N-1$.
Hence $p \mid N-1$ and $p \mid N$, absurd.

Lemma 11.2 If N is an odd composite, then for at least half of $M \in \Phi(N),\left(\frac{M}{N}\right) \not \equiv M^{\frac{N-1}{2}}(\bmod N)$.

Proof.

By Lemma 11.8, at least one $a \in \Phi(N)$ such that

$$
\left(\frac{a}{N}\right) \not \equiv a^{\frac{N-1}{2}} \quad(\bmod N)
$$

Let $B \subseteq \Phi(N)$ such that $\left(\frac{b}{N}\right) \equiv b^{\frac{N-1}{2}}(\bmod N)$ for all $b \in B$.
Let $a \cdot B$ be $\{a b: b \in B\}$.
Then $(a b)^{\frac{N-1}{2}} \equiv a^{\frac{N-1}{2}} \cdot b^{\frac{N-1}{2}} \not \equiv\left(\frac{a}{N}\right)\left(\frac{b}{N}\right)=\left(\frac{a b}{N}\right)(\bmod N)$.
The size of B and $a B$ are the same.
Hence at least half of $M \in \Phi(N)$ make $\left(\frac{M}{N}\right) \not \equiv M^{\frac{N-1}{2}}(\bmod N)$.

Monte Carlo Algorithm for Compositeness

Input N.

1. If $2 \mid N$, reply "Composite".
2. Generate a random number M between 2 and $N-1$. If $\operatorname{gcd}(M, N) \neq 1$, reply "Composite".
3. If $\left(\frac{M}{N}\right) \not \equiv M^{\frac{N-1}{2}}(\bmod N)$, reply "Composite".
4. Reply "Probably prime".

The algorithm takes cubic time.

