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/ Randomized Computation \

1. Can random numbers help us solve computational problems?
2. In a randomized algorithm, we may make the following
statement:

(a) Given any number n > 2, we can decide whether n is prime
with high probability.




/ Types of Errors

e positive: to answer “yes”

negative: to answer “no”

e true positive; true negative:
The answer coincides with the fact
false positive; false negative:
The answer is wrong

Example

1. Given n = 5, suppose we have to answer if n > 4.
If we answer “no”, then this answer is a false negative.
If we answer “yes”, then this answer is a true positive.

2. Suppose we have to answer if n is even.
Answer “yes” =- false positive
\ Answer “no” = true negative
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/ Monte Carlo Algorithm \

A randomized algorithm that never appears false positive.
e If it answers “yes”, then the answer must be correct.
e If it answers “no”, then the answer may be wrong.

e With high probability that it can answer “yes” if it is really

this case.




/

Symbolic Determinants

e Let A be an n X n matrix with each entry a multi-variate
polynomial.
We want to determine whether the determinant of A is not a

zero polynomial.

~

o det A=3"_o(m) ], aine) Where A= (a;;)nxn, o(m) =1 if

m is an even permutation, —1 is 7 is odd.




det A = Z o(m) ﬁ Q5.7 ()

1=1

det | ag1 ags aos

a3;1 asz2 4ass
= (1,102,203 3 T 02,103 201 3 + 03,101,202 3

— 1,102,303 2 — A1,202,103,3 — A1, 3022031

e m=[3,2,1] is an odd permutation.

a1,7(1)42,7(2)43,7(3) = 41,302,243,1

e m=[2,3,1] is an even permutation.

\ A1,7(1)42,7(2)43,7(3) = 41,202,303,1
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Gaussian elimination can solve “numerical determinants” easily.
No body knows how to solve the symbolic determinants in

polynomial time.

~




/ Randomized Algorithm for Symbolic \
Determinants

Assume there are m variables in A and the highest degree of each

variable in the expansion is at most d.
1. Choose m random integers i1,...,1,, between 0 and M = 2md.

2. Compute the determinant det A(%q,...,%,) by Gaussian

elimination.

3. If the result+# 0, reply “yes”.

4. If the result= 0, reply “probably equal to 0”.




4 N

Lemma 11.1 Let p(z1,...,x,) be a polynomial, not identically
zero, in m variables each of degree at most d in it, and let M > 0
be an integer. Then the number of m-tuples (z1,...,x,,) € ZY;
such that p(x1,...,2,,) = 0 is at most mdM™ 1,

Proof.

1. Induction on m. When m = 1 the lemma says that no
polynomial of degree < d cam have more than d roots.

2. Suppose the result is true for m — 1 variables.

Let the degree of x,, is t < d. We can rewrite p(x1,...,ZT;) as
q(z1, ... xm_1)xt, +7(21,...,Tm_1). Consider 1,...Tm_1
according to whether they can make ¢(x1,...,Zm_1) =0

\ (m—1)dM™ 2 - M+ M"™'d < mdM™ . /




/

Random Walks for 2SAT \

1. Start with any truth assignment T

2. Repeat the following steps r times.

(a) If there is no unsatisfied clause, Reply “Formula is
satisfiable” and halt.
Else pick any unsatisfied clause. Flip the value of of any one
of the literal inside this clause.

3. Reply “Formula is probably unsatisfiable”.




4 N

Theorem Let r = 2n?. Then this algorithm can find a satisfiable
truth assignment with probability at least % of the 2SAT formula is
satisfiable.

Proof.

A

1. T a satistying truth assignment
T": current truth assignment

2. t(7): the expectation for the number of flipping if T" differs from
T in exactly ¢ values

- /

10




/4. Let 2(0) =0 \

(i) =3(z(i — 1) +a(i+1)) +1
zn)=x(n—1)+1
Then t(i) < x(i) = 2in — 12 < n”.

5. Let r = 2n?. Then Prob[r > 2n?] < %
Lemma 11.2 (Markov Inequality) If x is a non-negative

random variable, then for any k > 0, Prob|x > ku,| < % where fi,

is the expectation of x.

Proof.

pe =Y ipi= Y ipi+ Y  ip; > kpaProblz > k).

. Problx > ku,| < %

- /
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Fermat Test \

. If n is prime, then ¢! =1 (mod n) for all a not divided by n.

. Hypothesis: n is not prime = at least half of nonzero residues

a can make a”~! # 1 (mod n)

. If it is true, we would have a polynomial Monte Carlo
algorithm for testing whether n is composite.
Unfortunately, it is false.
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/ Square Roots Modulo a Prime \

Consider 22 = a (mod p) where p > 3. Then exactly half of the

nonzero residues have square roots.

Proof.

e Consider the squares of 1,2,3,...,p — 1.
e They are exactly those numbers that have square roots.

e k and p — k collapse after squaring.

2 —

e However, x a has at most two roots, and in fact, either zero

or two roots.

N /
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Lemma 11.3 If¢"z =1 (mod p), then 22 = a has two roots.
p—1

Otherwise, a 2 = —1 (mod p) and it has no roots.

Proof.
Let r be a primitive root for p. Then each nonzero residue a = r*
for some k > 0.

1. k=2j: a7 = (TQj)pT_l = (rP~1)7 = 1, and the square roots

for @ are r? and 7t = .

p—1

2. k=25+1: ot = (7“23'“)137_1 — - D+ = B =

(mod p), and it has no square roots.

- /
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/ Legendre Symbol

’

(5)-

\

1
0
—1

for prime numbers p > 2.

Theorem (%) =a 2

Corollary (%’

-

N———
|
N

if a has square root in p
if p divides a

if a has no square root in p
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/ Gauss’s Lemma

(%) = (—=1)™ where m = [{i : 1 <i < E= =1 4i mod p > L
p > 2.

Proof.
Consider
p—1
Q7QQ>3Q7°'°7 9 " q
and | |
P 101,22

T2

but not both.

And no two numbers ¢ and ¢j can map the the same k

\ qgi =qj (mod p)=pli—j

2
Either k or —k (1 <k < ;) can be mapped by one number gz,

qgi =—qj (mod p)=q(i+j)=0 (modp)= pli+j

~

}| and

/
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Proof.
1.
1+2+3+--
o> Bt
2.

||M Ji

Legendre’s Law of Reciprocity

() ()=

SRl

Ll=>p—a=a+p—2a=a+p (mod 2)

z z{ J P

{ J +mp (mod 2).

~

/
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p—1
q—1

m+m'EiV—iJ+ 2 {p—szp_l-q_l (mod 2).

5. e 2
; (1%> (§> = (=)™ (=)™ = (=)= T
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/ Jacob’s Symbol

() =G G) -Gl

if N =pips---pn where p;’s are odd primes (which may be the
same).

Lemma 11.6

L (M) = (M) (M) i (M, My, N) = 1

)
3. (&) (%) = (—1)"z "%z if (M,N) =1 and M, N are odd.

Proof.
\Let M =qq2- - q¢m and N = pipa -+ pp.
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and 21 4 021 = ab=l (104 2).
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Lemma

Proof. ;
Let M = qq - - ¢m,. We first show that (%) = (—l)pT_1 for odd
primes.

Consider 2,2 x 2,...,2i,...,2x 22t for 1 < < 221,

. p_]_ . p—l
21 > S = 1>
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Lemma Given two integers M and N with £ =1gMN,

ged(M, N) and (4) can be computed in O(¢3) time.

Summary
1. (85)=—(57) if M =N =3 (mod 4)
2. (£)=-1if N=3 (mod 8) or N =5 (mod 8)

(i

M

N
2

N

T (@) (3)

11
163

\/O}

x
-

)=-() =~ ()=
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Lemma 11.8 If (%)

\

M~ (mod N) for all M € ®(N), then

N 1s a prime.

Proof.

Suppose N is composite.

1. N =pips---pr, the product of distinct primes.

Let r be a number such that (p%) = —1,
r mod p; =1for 2 <j<k.

Then M 7 = (%) =11 (p—]\{) = —1 (mod N).

Hence Mz = - (mod pa),

but Mz =172 =1 (mod p3).

Let N = p?m for some p > 2 and m > 1.
Let 7 be a primitive root for p?. Then ¢(p?) = p(p — 1)|N — 1.

\ Hence p|N — 1 and p|N, absurd. /
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4 N

Lemma 11.2 If N is an odd composite, then for at least half of
M e ®(N), (4) £ M7 (mod N).

Proof.
By Lemma 11.8, at least one a € ®(/NV) such that

(%) == a T (mod N).

Let B C ®(N) such that (&) = bz (mod N) for all b € B.
Let a - B be {ab bEB}

Then (ab) "2 =a b £ (£)(2) =(2) (mod N).
The size of B and aB are the same.

Hence at least half of M € ®(N) make (5) % Mz (mod N).

- /
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/ Monte Carlo Algorithm for \

Compositeness
Input N.

1. If 2|N, reply “Composite”.

2. Generate a random number M between 2 and N — 1.
If gcd(M, N) # 1, reply “Composite”.

3. If (&) # M =z (mod N), reply “Composite”.
4. Reply “Probably prime”.

The algorithm takes cubic time.

N /
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