Theory of Computation
 Chapter 10

Guan-Shieng Huang

May 24, 2005

coNP

- A problem is in coNP iff its complement is in NP.
- The complement of a decision problem is to interchange the "yes" / "no" answer for each instance with respect to the membership problem.
- Let A be a problem in NP. Then any positive instance of A has a succinct certificate.
- Let B be a coNP problem. Then any negative instance of B has a succinct disqualification.

Validity

Given a Boolean formula represented in conjunctive-normal form, is it true for all truth assignments?

This problem is coNP-complete.
That is, any coNP problem can be reduced to Validity.

- F is valid iff $\neg F$ is unsatisfiable.
- The complement of " $\neg F$ is unsatisfiable" is " $\neg F$ is satisfiable." It is indeed the SAT problem.
- Since SAT is NP-complete, any coNP problem can be reduced to coSAT.

Proposition 10.1

If L is NP-complete, then its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.

Proof.

We have to show that any problem L^{\prime} in coNP can be reduced to \bar{L}.

- \bar{L}^{\prime} is in NP.
- \bar{L}^{\prime} can be reduced to L. That is, $x \in \bar{L}^{\prime}$ iff $R(x) \in L$.
- The complement of \bar{L}^{\prime} can be reduced to \bar{L} since $x \notin \bar{L}^{\prime}$ iff $R(x) \in \bar{L}$
- That is, L^{\prime} can be reduced to \bar{L} by the same reduction from \bar{L}^{\prime} to L.

Open Question

$\mathrm{NP}=\mathrm{coNP} ?$

If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{NP}=\mathrm{coNP}$. $(\mathrm{NP}=\mathrm{P}=\mathrm{coP}=\mathrm{coNP})$
However, it is also possible that $\mathrm{NP}=\mathrm{coNP}$, even $\mathrm{P} \neq \mathrm{NP}$.

Proposition 10.2

If a coNP-complete problem is in NP, then $\mathrm{NP}=\mathrm{coNP}$.

Proof.

Let L be the coNP-complete problem that is in NP.

1. $\operatorname{coNP} \subseteq \mathrm{NP}$:

Since any $L^{\prime} \in$ coNP can be reduced to L and L is in NP, we have L^{\prime} is in NP.
2. $\mathrm{NP} \subseteq \mathrm{coNP}$

For any $L^{\prime \prime} \in \mathrm{NP}$, asking "whether $x \notin L^{\prime \prime \prime}$ " is in coNP. This problem can be reduced to L since L is coNP-complete. Thus, asking whether $x \in L^{\prime \prime}$ can be reduced to the complement of L, which is in coNP.

Example 10.2

PRIMES: Determines whether an integer N given in binary is a prime number.
It is easy to see that PRIMES is in coNP since COMPOSITE is in NP.

Notations

- $x \mid y$ if there is a whole number z with $y=x z$.
- $x \nmid y$ iff it is not the case for $x \mid y$.
- $a \equiv b(\bmod n)$ iff $n \mid(a-b)$.
$(9 \equiv 14(\bmod 5))$
- $a \equiv a(\bmod n)$ (reflexive)
- $a \equiv b(\bmod n)$ implies $b \equiv a(\bmod n)($ symmetric $)$
- $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ implies $a \equiv c(\bmod n)$ (transitive)
- If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

1. $a+b \equiv c+d(\bmod n)$
2. $a-b \equiv c-d(\bmod n)$
3. $a \cdot b \equiv c \cdot d(\bmod n)$

- If $a \equiv b(\bmod n)$, then $a c \equiv b c(\bmod n)$ for any b.
- If $a c \equiv b c(\bmod n)$ and c and n are relatively prime, then we can conclude that $a \equiv b(\bmod n)$. (cancellation rule)

Theorem 10.1

A number $p>2$ is prime if and only if there is a number $1<r<p$ such that $r^{p-1} \equiv 1(\bmod p)$, and $r^{\frac{p-1}{q}} \not \equiv 1(\bmod p)$ for all prime divisors q of $p-1$.

In fact, we can claim that $p>2$ is prime iff there is a number $1<r<p$ such that $r^{p-1} \equiv 1(\bmod p)$, and $r^{\frac{p-1}{m}} \not \equiv 1(\bmod p)$ for all proper divisors m of $p-1$.

Pratt's Theorem

PRIMES is in NP \cap coNP.

1. We know that PRIMES is in coNP.
2. We will show that PRIMES is in NP.

- 13 is prime: by setting $r=2$ $2^{12}=\left(2^{4}\right)^{3}=16^{3} \equiv 3^{3}=27 \equiv 1(\bmod 13)$. $13-1=12 \Rightarrow$ The prime factors are 2 and 3 .
$2^{\frac{13-1}{2}}=2^{6}=64 \equiv-1 \not \equiv 1(\bmod 13)$.
$2^{\frac{13-1}{3}}=2^{4}=16 \equiv 3 \not \equiv 1(\bmod 13)$.
$\therefore 13$ is prime.
Our certificate for 13 being prime is $(2 ; 2,3)$.
- 17 is prime: by setting $r=3$
$3^{16}=\left(3^{4}\right)^{4}=(81)^{4} \equiv(-4)^{4}=16^{2} \equiv 1(\bmod 17)$.
$17-1=16 \Rightarrow$ The prime factor is only 2 .
$3^{\frac{17-1}{2}}=3^{8} \equiv 16 \not \equiv 1(\bmod 17)$.
$\therefore 17$ is prime.
Our certificate for 13 being prime is $(3 ; 2)$.
- 91 is not prime:

However, by setting $r=10$ we have

$$
\begin{aligned}
& 10^{90}=100^{45} \equiv 9^{45}=\left(9^{3}\right)^{15} \equiv 1(\bmod 91) \\
& 91-1=90 \Rightarrow 2,45 \\
& 10^{\frac{91-1}{2}}=10^{45}=1000^{15} \equiv(-1)^{15} \equiv-1(\bmod 91) \\
& 10^{\frac{91-1}{45}}=10^{2} \equiv 9(\bmod 91)
\end{aligned}
$$

However, 91 is not prime.

$$
\begin{aligned}
& 91-1=90 \Rightarrow 2,3,5 \\
& 10^{\frac{91-1}{3}}=10^{30} \equiv 1(\bmod 91)!
\end{aligned}
$$

3. How to test whether $a^{n} \equiv 1(\bmod p)$?

By the Horner's rule.

$$
90=64+16+8+2=(1011010)_{2}
$$

Hence if we can compute $a^{0}, a^{1}, a^{2}, a^{4}, a^{8}, \ldots, a^{64}$, we can compute $a^{90} \bmod p$.
We can compute $a \cdot b \bmod p$ in time $O\left(\ell^{2}\right)$ where ℓ is the length of p in binary number.
Hence, we can test whether $a^{n} \equiv 1(\bmod p)$ in time $O\left(\ell^{3}\right)$.
4. The certificate for p being prime is of the form:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), \ldots, q_{k}, C\left(q_{k}\right)\right)
$$

For example,

$$
C(67)=(2 ; 2,(1), 3,(2 ; 2,(1)), 11,(8 ; 2,(1), 5,(3 ; 2,(1))))) .
$$

We need to test
(a) $r^{p-1} \equiv 1(\bmod p)$
(b) $q_{1}, q_{2}, \ldots, q_{k}$ are the only prime divisors of $p-1$.
(c) $r^{\frac{p-1}{q_{i}}} \not \equiv 1(\bmod p)$ for all possible i.
(d) q_{i} 's are prime.

In the subsequent discussion, we will show that $C(p)$ is in polynomial length with respect to the length of the binary representation of p.
5. We use $|a|$ to denote the number of bits to represent a.
$(|a|=\lfloor\lg a\rfloor+1)$
Suppose $a=b \cdot c$, then $|b|+|c|-1 \leq|a| \leq|b|+|c|$.
Hence $\lfloor\lg b\rfloor+\lfloor\lg c\rfloor \leq\lfloor\lg a\rfloor$.
If $a=b_{1} \cdot b_{2} \cdots b_{m}$, then we have

$$
\lfloor\lg a\rfloor \geq \sum_{i=1}^{m}\left\lfloor\lg b_{i}\right\rfloor \text { and }|a| \geq \sum\left|b_{i}\right|-(m-1)
$$

6. The length of $C(p)$ is bounded by $3(\lfloor\lg p\rfloor)^{2}$.

We need to bound the length of

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), \ldots, q_{k}, C\left(q_{k}\right)\right) .
$$

Let $S(p)$ be the length of $C(p)$ and $n=\lfloor\lg p\rfloor$.

$$
\text { Then } S(p) \leq 10+|p|+k+\sum_{i \geq 2}\left|q_{i}\right|+\sum_{i \geq 2} S\left(q_{i}\right)
$$

$$
(C(67)=(2 ; 2,(1), 3,(2 ; 2,(1)), \overline{1} 1,(8 ; 2,(1), \overline{5},(3 ; 2,(1))))))
$$

$$
\sum\left|q_{i}\right| \leq|p|+(k-1)=n+k
$$

$$
\sum S\left(q_{i}\right) \leq 3 \sum\left(\left\lfloor\lg q_{i}\right\rfloor\right)^{2} \leq 3\left(\sum\left\lfloor\lg q_{i}\right\rfloor\right)^{2}
$$

$$
\leq 3\left(\left\lfloor\lg \frac{p-1}{2}\right\rfloor\right)^{2} \leq 3(n-1)^{2}
$$

$$
\begin{aligned}
\therefore S(p) & \leq 11+n+k+n+k+3(n-1)^{2} \\
& \leq 11+4 n+3 n^{2}-6 n+3 \leq 3 n^{2}-2 n+14 \leq 3 n^{2}
\end{aligned}
$$

for $n \geq 7$.
Hence, $S(p) \leq 3(\lfloor\lg p\rfloor)^{2}$.
7. We also have to bound the time complexity for verifying the certificate.
As a result, one can bound the time in $O\left(n^{5}\right)$ where $n=\lfloor\lg p\rfloor$. Hence PRIMES is in NP.

In order to prove Theorem 10.1, we need more knowledge on the number theory.

Theorem 10.1 A number $p>2$ is prime if and only if there is a number $1<r<p$ such that $r^{p-1} \equiv 1(\bmod p)$, and $r^{\frac{p-1}{q}} \not \equiv 1$ $(\bmod p)$ for all prime divisors q of $p-1$.

Notations

1. p, a prime
2. m divides n if $n=m k$. ($m \mid n$)
3. (m, n), the greatest common divisor of m and n
4. $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$, the residues modulo n
5. $\Phi(n)=\{m: 1 \leq m \leq n,(m, n)=1\}$ (Euler's totient function)
6. $\phi(n)=|\Phi(n)|$
7. $\mathbb{Z}_{n}^{*}=\{m: 1 \leq m<n,(m, n)=1\} \cup\{0\}$, the reduced residues modulo n

Example $\Phi(12)=\{1,5,7,11\}, \Phi(11)=\{1,2,3,4, \ldots, 10\}$. $\phi(1)=1$.

Lemma 10.1 $\quad \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

Corollary If $(m, n)=1$, then $\phi(m \cdot n)=\phi(m) \cdot \phi(n)$. (multiplicative)

Example If $n=p q$ where p and q are primes. Then

$$
\phi(n)=n-p-q+1=n\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

Proof.

By the inclusive-exclusive principle.
Let A_{p} be the set of numbers between $1 \ldots n$ that are divisible by prime $p .\left(A_{p}=\{x: 1 \leq x \leq n \& p \mid x\}\right)$
Then $\Phi(n)=\bar{A}_{p_{1}} \cap \bar{A}_{p_{2}} \cap \cdots \cap \bar{A}_{p_{\ell}}=\square-\left(A_{p_{1}} \cup A_{p_{2}} \cup \cdots \cup A_{p_{\ell}}\right)$. $\#\left(A_{p_{1}} \cup A_{p_{2}} \cup \cdots \cup A_{p_{\ell}}\right)=\cdots$

The Chinese Remaindering Theorem

Let $n=p_{1} \cdots p_{k}$.
$\phi(n)=\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)$
reveals a more important fact.
There is a one-one correspondence between r and $\left(r_{1}, \ldots, r_{k}\right)$ where $r \in \Phi(n)$ and $r_{i} \in \Phi\left(P_{i}\right)$ for all i.
In fact, $r_{i} \equiv r\left(\bmod p_{i}\right)$ and $r \in \Phi(n) \rightarrow r_{i} \in \Phi\left(p_{i}\right)$, a bijection.

Lemma $10.2 \quad \sum_{m \mid n} \phi(m)=n$.

Take $n=12$ for illustration. $m=1,2,3,4,6,12$.
$\phi(1)+\phi(2)+\phi(3)+\phi(4)+\phi(6)+\phi(12)=12$.

Proof.

For the case when $n=12$.
$\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}, \frac{12}{12}$

Fermat's Theorem

Lemma $10.3 a^{p-1} \equiv 1(\bmod p)$ for $p \nmid a$. $a^{\phi(n)} \equiv 1(\bmod n)$ if $(a, n)=1$ (Euler's Theorem)

Proof.
$1,2,3, \ldots, p-1$
$\{a, 2 a, 3 a, \ldots, a(p-1)\}=\{1,2,3, \ldots, p-1\}$ since $a x \equiv a y$ implies $x \equiv y(\bmod p)$.
$(p-1)!\equiv a^{p-1} \cdot(p-1)!$
$\therefore a^{p-1} \equiv 1(\bmod p)$.

Number of Roots for Polynomials

Lemma 10.4 Any polynomial of degree k that is not identically zero has at most k distinct roots modulo p.

Proof.

Let $p(x)$ be a polynomial of degree k. If x_{k} is a root for $p(x)$, then there is $q(x)$ of degree $k-1$ such that

$$
p(x) \equiv\left(x-x_{k}\right) q(x) \quad(\bmod p) .
$$

Any x that is not a root for $q(x)$ cannot make $q(x) \equiv 0$. Therefore there are at most $(k-1)+1=k$ roots for $p(x)$ by the induction.

Exponent for a number m

It is the smallest k such that $m^{k} \equiv 1(\bmod p)$.

- Such k always exists as long as $(p, m)=1$ since $a^{p-1} \equiv 1(\bmod p)$.
- $k \mid(p-1)$.
- If $m^{k_{1}} \equiv 1(\bmod p)$ and $m^{k_{2}} \equiv 1(\bmod p)$, then $m \mid k_{1}$ and $m \mid k_{2}$.

The Primitive Roots for \mathbb{Z}_{p}

A number r such that $r^{1}, r^{2}, \ldots, r^{p-1}$ generates $1,2, \ldots, p-1$. There always exists a primitive root for any prime.

Let us fixed a p.
Define $R(k)$ to be the set of elements in \mathbb{Z}_{p} with exponents exactly equal to k.

Lemma

$$
|R(k)| \leq \phi(k)
$$

Proof.

If $R(k) \neq \emptyset$, there exists s such that

$$
s^{1}, \ldots, s^{k-1} \not \equiv 1 \text { and } s^{k} \equiv 1 \quad(\bmod p)
$$

These are all k distinct roots for $x^{k} \equiv 1(\bmod p)$.
And $s^{t} \in R(k)$ iff $(t, k)=1$, since otherwise $\left(s^{t}\right)^{k / d} \equiv 1$ for some $d \mid(k, t)$. There are exactly $\phi(k)$ such t.
If $R(k)=\emptyset$, the inequality certainly holds.

Lemma

$$
|R(k)|=\phi(k) \text { if } k \mid(p-1) .
$$

Proof.

1. Since $a^{p-1} \equiv 1(\bmod p)$, each $a \in \Phi(p)$ must belong to some $R(k)$ for some $k \mid(p-1)$.
2. Thus, $\sum_{k \mid(p-1)} R(k)=p-1$.
3. $\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1$
4. Hence, all inequalities are in fact equalities.

Lemma

There is an r such that r is a primitive root for \mathbb{Z}_{p}. $\left(r^{1}, r^{2}, \ldots, r^{p-1}\right.$ generates $\left.1,2, \ldots, p-1\right)$

Proof.

1. There is an r such that $r \in R(p-1)$.
2. $r^{1}, r^{2}, \ldots, r^{p-2} \not \equiv 1$ and $r^{p-1} \equiv 1(\bmod p)$.
3. $r^{1}, r^{2}, \ldots, r^{p-1}$ are all distinct.
4. r is a primitive root.

Theorem 10.1 A number $p>2$ is prime if and only if there is a number $1<r<p$ such that $r^{p-1} \equiv 1(\bmod p)$, and $r^{\frac{p-1}{q}} \not \equiv 1$ $(\bmod p)$ for all prime divisors q of $p-1$.

Proof.

If $p>2$ is a prime, let r be its primitive root and all conditions on the only-if part are satisfied.
Conversely, assume p is not a prime.

1. Any r satisfies $r^{\phi(p)} \equiv 1(\bmod p)$. (Euler's Theorem)
2. If $r^{p-1} \equiv 1(\bmod p)$, then the exponent of r must divide $\phi(p)$ and $p-1$, and $\phi(p) \neq p-1$.
3. There exists $q>1$ such that $\frac{p-1}{q}$ is the exponent of r.
4. Thus, $r^{\frac{p-1}{q}} \equiv 1(\bmod p)$ for some $q>1$. (Contradiction)

The Primitive Roots for \mathbb{Z}_{m}

We can extend the idea of primitive to general m (which may not be a prime). It is a number r such that $r^{1}, r^{2}, \ldots, r^{\phi(m)}(\bmod m)$ generates $\Phi(m)$.

Theorem There is a primitive root for m if and only if $m=2,4, p^{\ell}, 2 p^{\ell}$ where p is an odd prime.

