Theory of Computation Chapter 10

Guan-Shieng Huang

May 24, 2005

coNP

- A problem is in coNP iff its complement is in NP.
- The complement of a decision problem is to interchange the "yes"/"no" answer for each instance with respect to the membership problem.
- Let A be a problem in NP. Then any positive instance of A has a succinct certificate.
- Let *B* be a coNP problem. Then any negative instance of *B* has a succinct disqualification.

Validity

Given a Boolean formula represented in conjunctive-normal form, is it true for all truth assignments?

This problem is coNP-complete.

That is, any coNP problem can be reduced to Validity.

- F is valid iff $\neg F$ is unsatisfiable.
- The complement of "¬F is unsatisfiable" is "¬F is satisfiable."
 It is indeed the SAT problem.
- Since SAT is NP-complete, any coNP problem can be reduced to coSAT.

Proposition 10.1

If L is NP-complete, then its complement $\overline{L} = \Sigma^* - L$ is coNP-complete.

Proof.

We have to show that any problem L' in coNP can be reduced to \overline{L} .

- \overline{L}' is in NP.
- \overline{L}' can be reduced to L. That is, $x \in \overline{L}'$ iff $R(x) \in L$.
- The complement of \bar{L}' can be reduced to \bar{L} since $x \notin \bar{L}'$ iff $R(x) \in \bar{L}$
- That is, L' can be reduced to L
 by the same reduction from L'
 to L.

Open Question

NP = coNP?

If P=NP, then NP=coNP. (NP=P=coP=coNP) However, it is also possible that NP=coNP, even $P\neq NP$.

Proposition 10.2

If a coNP-complete problem is in NP, then NP=coNP.

Proof.

Let L be the coNP-complete problem that is in NP.

1. $coNP \subseteq NP$:

Since any $L' \in \text{coNP}$ can be reduced to L and L is in NP, we have L' is in NP.

2. NP \subseteq coNP

For any $L'' \in NP$, asking "whether $x \notin L''$ " is in coNP. This problem can be reduced to L since L is coNP-complete. Thus, asking whether $x \in L''$ can be reduced to the complement of L, which is in coNP.

Example 10.2

PRIMES: Determines whether an integer N given in binary is a prime number.

It is easy to see that PRIMES is in coNP since COMPOSITE is in NP.

Notations

- x|y if there is a whole number z with y = xz.
- $x \nmid y$ iff it is not the case for $x \mid y$.
- $a \equiv b \pmod{n}$ iff $n \mid (a b)$. (9 $\equiv 14 \pmod{5}$)
- $a \equiv a \pmod{n}$ (reflexive)
- $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$ (symmetric)
- $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$ (transitive)
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then
 - 1. $a+b \equiv c+d \pmod{n}$
 - 2. $a-b \equiv c-d \pmod{n}$
 - 3. $a \cdot b \equiv c \cdot d \pmod{n}$

- If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$ for any b.
- If $ac \equiv bc \pmod{n}$ and c and n are relatively prime, then we can conclude that $a \equiv b \pmod{n}$. (cancellation rule)

Theorem 10.1

A number p > 2 is prime if and only if there is a number 1 < r < psuch that $r^{p-1} \equiv 1 \pmod{p}$, and $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ for all prime divisors q of p - 1.

In fact, we can claim that p > 2 is prime iff there is a number 1 < r < p such that $r^{p-1} \equiv 1 \pmod{p}$, and $r^{\frac{p-1}{m}} \not\equiv 1 \pmod{p}$ for all proper divisors m of p-1.

Pratt's Theorem

PRIMES is in NP \cap coNP.

- 1. We know that PRIMES is in coNP.
- 2. We will show that PRIMES is in NP.

• 13 is prime: by setting
$$r = 2$$

 $2^{12} = (2^4)^3 = 16^3 \equiv 3^3 = 27 \equiv 1 \pmod{13}$.
 $13 - 1 = 12 \Rightarrow$ The prime factors are 2 and 3.
 $2^{\frac{13-1}{2}} = 2^6 = 64 \equiv -1 \not\equiv 1 \pmod{13}$.
 $2^{\frac{13-1}{3}} = 2^4 = 16 \equiv 3 \not\equiv 1 \pmod{13}$.

 \therefore 13 is prime.

Our certificate for 13 being prime is (2; 2, 3).

Our certificate for 13 being prime is (3; 2).

• 91 is not prime: However, by setting r = 10 we have $10^{90} = 100^{45} \equiv 9^{45} = (9^3)^{15} \equiv 1 \pmod{91}$ $91 - 1 = 90 \Rightarrow 2, 45$ $10^{\frac{91-1}{2}} = 10^{45} = 1000^{15} \equiv (-1)^{15} \equiv -1 \pmod{91}$ $10^{\frac{91-1}{45}} = 10^2 \equiv 9 \pmod{91}$. However, 91 is not prime. $91 - 1 = 90 \Rightarrow 2, 3, 5$ $10^{\frac{91-1}{3}} = 10^{30} \equiv 1 \pmod{91}!$ 3. How to test whether $a^n \equiv 1 \pmod{p}$? By the Horner's rule.

$$90 = 64 + 16 + 8 + 2 = (1011010)_2$$

Hence if we can compute $a^0, a^1, a^2, a^4, a^8, \ldots, a^{64}$, we can compute $a^{90} \mod p$.

We can compute $a \cdot b \mod p$ in time $O(\ell^2)$ where ℓ is the length of p in binary number.

Hence, we can test whether $a^n \equiv 1 \pmod{p}$ in time $O(\ell^3)$.

4. The certificate for p being prime is of the form:

$$C(p) = (r; q_1, C(q_1), \dots, q_k, C(q_k)).$$

For example,

C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1))))). We need to test

(a)
$$r^{p-1} \equiv 1 \pmod{p}$$

(b) q_1, q_2, \ldots, q_k are the only prime divisors of p-1.

(c) $r^{\frac{p-1}{q_i}} \not\equiv 1 \pmod{p}$ for all possible *i*.

(d) q_i 's are prime.

In the subsequent discussion, we will show that C(p) is in polynomial length with respect to the length of the binary representation of p. 5. We use |a| to denote the number of bits to represent a. $(|a| = \lfloor \lg a \rfloor + 1)$ Suppose $a = b \cdot c$, then $|b| + |c| - 1 \le |a| \le |b| + |c|$. Hence $\lfloor \lg b \rfloor + \lfloor \lg c \rfloor \le \lfloor \lg a \rfloor$. If $a = b_1 \cdot b_2 \cdots b_m$, then we have

$$\lfloor \lg a \rfloor \ge \sum_{i=1}^{m} \lfloor \lg b_i \rfloor$$
 and $|a| \ge \sum |b_i| - (m-1).$

6. The length of C(p) is bounded by $3(\lfloor \lg p \rfloor)^2$. We need to bound the length of

$$C(p) = (r; q_1, C(q_1), \dots, q_k, C(q_k)).$$

Let S(p) be the length of C(p) and $n = \lfloor \lg p \rfloor$. Then $S(p) \le 10 + |p| + k + \sum_{i \ge 2} |q_i| + \sum_{i \ge 2} S(q_i)$. (C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1)))))) $\sum |q_i| \le |p| + (k - 1) = n + k$. $\sum S(q_i) \le 3 \sum (\lfloor \lg q_i \rfloor)^2 \le 3 (\sum \lfloor \lg q_i \rfloor)^2$ $\le 3 (\lfloor \lg \frac{p-1}{2} \rfloor)^2 \le 3(n-1)^2$

$$\therefore S(p) \leq 11 + n + k + n + k + 3(n-1)^2 \\ \leq 11 + 4n + 3n^2 - 6n + 3 \leq 3n^2 - 2n + 14 \leq 3n^2$$

for $n \ge 7$. Hence, $S(p) \le 3(\lfloor \lg p \rfloor)^2$. 7. We also have to bound the time complexity for verifying the certificate.

As a result, one can bound the time in $O(n^5)$ where $n = \lfloor \lg p \rfloor$. Hence PRIMES is in NP. In order to prove Theorem 10.1, we need more knowledge on the number theory.

Theorem 10.1 A number p > 2 is prime if and only if there is a number 1 < r < p such that $r^{p-1} \equiv 1 \pmod{p}$, and $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

Notations

1. p, a prime

2. *m* divides *n* if n = mk. (m|n)

3. (m, n), the greatest common divisor of m and n

4. $\mathbb{Z}_n = \{0, 1, 2, ..., n - 1\}$, the residues modulo *n*

5. $\Phi(n) = \{m : 1 \le m \le n, (m, n) = 1\}$ (Euler's totient function)

6.
$$\phi(n) = |\Phi(n)|$$

7. $\mathbb{Z}_n^* = \{m: 1 \le m < n, (m, n) = 1\} \cup \{0\}$, the reduced residues modulo n

Example $\Phi(12) = \{1, 5, 7, 11\}, \Phi(11) = \{1, 2, 3, 4, \dots, 10\}.$ $\phi(1) = 1.$ **Lemma 10.1** $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

Corollary If (m, n) = 1, then $\phi(m \cdot n) = \phi(m) \cdot \phi(n)$. (multiplicative)

Example If n = pq where p and q are primes. Then

$$\phi(n) = n - p - q + 1 = n(1 - \frac{1}{p})(1 - \frac{1}{q})$$

Proof.

By the inclusive-exclusive principle.

Let A_p be the set of numbers between $1 \dots n$ that are divisible by prime p. $(A_p = \{x : 1 \le x \le n \& p | x\})$ Then $\Phi(n) = \overline{A}_{p_1} \cap \overline{A}_{p_2} \cap \dots \cap \overline{A}_{p_\ell} = \Box - (A_{p_1} \cup A_{p_2} \cup \dots \cup A_{p_\ell}).$ $\#(A_{p_1} \cup A_{p_2} \cup \dots \cup A_{p_\ell}) = \dots$

The Chinese Remaindering Theorem

Let $n = p_1 \cdots p_k$. $\phi(n) = (p_1 - 1)(p_2 - 1) \cdots (p_k - 1)$ reveals a more important fact. There is a one-one correspondence between r and (r_1, \ldots, r_k) where $r \in \Phi(n)$ and $r_i \in \Phi(P_i)$ for all i. In fact, $r_i \equiv r \pmod{p_i}$ and $r \in \Phi(n) \to r_i \in \Phi(p_i)$, a bijection. **Lemma 10.2** $\sum_{m|n} \phi(m) = n.$

Take n = 12 for illustration. m = 1, 2, 3, 4, 6, 12. $\phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12) = 12$.

Proof.

For the case when n = 12. $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}, \frac{12}{12}$

Fermat's Theorem

Lemma 10.3 $a^{p-1} \equiv 1 \pmod{p}$ for $p \nmid a$. $a^{\phi(n)} \equiv 1 \pmod{n}$ if (a, n) = 1 (Euler's Theorem)

Proof.

$$1, 2, 3, \dots, p - 1$$

$$\{a, 2a, 3a, \dots, a(p-1)\} = \{1, 2, 3, \dots, p-1\} \text{ since } ax \equiv ay \text{ implies } x \equiv y \pmod{p}.$$

$$(p-1)! \equiv a^{p-1} \cdot (p-1)!$$

$$\therefore a^{p-1} \equiv 1 \pmod{p}.$$

Number of Roots for Polynomials

Lemma 10.4 Any polynomial of degree k that is not identically zero has at most k distinct roots modulo p.

Proof.

Let p(x) be a polynomial of degree k. If x_k is a root for p(x), then there is q(x) of degree k - 1 such that

$$p(x) \equiv (x - x_k)q(x) \pmod{p}.$$

Any x that is not a root for q(x) cannot make $q(x) \equiv 0$. Therefore there are at most (k-1) + 1 = k roots for p(x) by the induction.

Exponent for a number m

It is the smallest k such that $m^k \equiv 1 \pmod{p}$.

- Such k always exists as long as (p, m) = 1since $a^{p-1} \equiv 1 \pmod{p}$.
- $k \mid (p-1).$
- If $m^{k_1} \equiv 1 \pmod{p}$ and $m^{k_2} \equiv 1 \pmod{p}$, then $m \mid k_1$ and $m \mid k_2$.

The Primitive Roots for \mathbb{Z}_p

A number r such that $r^1, r^2, \ldots, r^{p-1}$ generates $1, 2, \ldots, p-1$. There always exists a primitive root for any prime. Let us fixed a p. Define R(k) to be the set of elements in \mathbb{Z}_p with exponents exactly equal to k.

Lemma

$$|R(k)| \le \phi(k).$$

Proof.

If $R(k) \neq \emptyset$, there exists s such that

$$s^1, \ldots, s^{k-1} \not\equiv 1 \text{ and } s^k \equiv 1 \pmod{p}.$$

These are all k distinct roots for $x^k \equiv 1 \pmod{p}$. And $s^t \in R(k)$ iff (t, k) = 1, since otherwise $(s^t)^{k/d} \equiv 1$ for some $d \mid (k, t)$. There are exactly $\phi(k)$ such t. If $R(k) = \emptyset$, the inequality certainly holds.

Lemma

$$|R(k)| = \phi(k)$$
 if $k \mid (p-1)$.

Proof.

- 1. Since $a^{p-1} \equiv 1 \pmod{p}$, each $a \in \Phi(p)$ must belong to some R(k) for some $k \mid (p-1)$.
- 2. Thus, $\sum_{k|(p-1)} R(k) = p 1$. 3. $\sum_{k|(p-1)} R(k) \le \sum_{k|(p-1)} \phi(k) = p - 1$
- 4. Hence, all inequalities are in fact equalities.

Lemma

There is an r such that r is a primitive root for \mathbb{Z}_p .

 $(r^1, r^2, \dots, r^{p-1} \text{ generates } 1, 2, \dots, p-1)$

Proof.

1. There is an r such that $r \in R(p-1)$.

2.
$$r^1, r^2, \dots, r^{p-2} \not\equiv 1 \text{ and } r^{p-1} \equiv 1 \pmod{p}$$
.

- 3. $r^1, r^2, \ldots, r^{p-1}$ are all distinct.
- 4. r is a primitive root.

Theorem 10.1 A number p > 2 is prime if and only if there is a number 1 < r < p such that $r^{p-1} \equiv 1 \pmod{p}$, and $r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

Proof.

If p > 2 is a prime, let r be its primitive root and all conditions on the only-if part are satisfied.

Conversely, assume p is not a prime.

- 1. Any r satisfies $r^{\phi(p)} \equiv 1 \pmod{p}$. (Euler's Theorem)
- 2. If $r^{p-1} \equiv 1 \pmod{p}$, then the exponent of r must divide $\phi(p)$ and p-1, and $\phi(p) \neq p-1$.
- 3. There exists q > 1 such that $\frac{p-1}{q}$ is the exponent of r.

4. Thus, $r^{\frac{p-1}{q}} \equiv 1 \pmod{p}$ for some q > 1. (Contradiction)

The Primitive Roots for \mathbb{Z}_m

We can extend the idea of primitive to general m (which may not be a prime). It is a number r such that $r^1, r^2, \ldots, r^{\phi(m)} \pmod{m}$ generates $\Phi(m)$.

Theorem There is a primitive root for m if and only if $m = 2, 4, p^{\ell}, 2p^{\ell}$ where p is an odd prime.