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coNP \

A problem is in coNP iff its complement is in NP.

The complement of a decision problem is to interchange the
“yes” /“no” answer for each instance with respect to the

membership problem.

Let A be a problem in NP. Then any positive instance of A has
a succinct certificate.

Let B be a coNP problem. Then any negative instance of B
has a succinct disqualification.




a Validity A

Given a Boolean formula represented in conjunctive-normal form, is

it true for all truth assignments?

This problem is coNP-complete.
That is, any coNP problem can be reduced to Validity.

e [F'is valid iff = F is unsatisfiable.

e The complement of “—F' is unsatisfiable” is “—F' is satisfiable.”
It is indeed the SAT problem.

e Since SAT is NP-complete, any coNP problem can be reduced
to coSAT.
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/ Proposition 10.1 \

If L is NP-complete, then its complement L = X* — L is
coNP-complete.

Proof.
We have to show that any problem L’ in coNP can be reduced to L.

e [/ isin NP.
e L' can be reduced to L. That is, z € L' iff R(z) € L.

e The complement of L’ can be reduced to L
since ¢ ¢ L' iff R(z) € L

e That is, L' can be reduced to L by the same reduction from L’
to L.

N /




/ Open Question
NP = coNP?

If P=NP, then NP=coNP.
However, it is also possible that NP=coNP, even P#NP.




/ Proposition 10.2 \

If a coNP-complete problem is in NP, then NP=coNP.

Proof.
Let L be the coNP-complete problem that is in NP.

1. coNPCNP:
Since any L’ € coNP can be reduced to L and L is in NP, we
have L’ is in NP.

2. NPC coNP
For any L” € NP, asking “whether x ¢ L”” is in coNP. This
problem can be reduced to L since L is coNP-complete. Thus,

asking whether x € L” can be reduced to the complement of L,
which is in coNP.
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/ Example 10.2

PRIMES: Determines whether an integer N given in binary is a

prime number.

NP.

It is easy to see that PRIMES is in coNP since COMPOSITE is in
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/ Notations

e x|y if there is a whole number z with y = zz.

e 11y iff it is not the case for x|y.

e a =b (mod n) iff n|(a — b).

e a =a (mod n)
e ¢ =b (mod n) implies b = a (mod n)

e a =b (mod n) and b = ¢ (mod n) implies a = ¢ (mod n)

e If a =b (mod n) and ¢ =d (mod n), then
l.a+b=c+d (mod n)
2. a—b=c—d (mod n)

\ 3. a-b=c-d (mod n)




/

e If a =b (mod n), then ac = be (mod n) for any b.

e If ac = bc (mod n) and ¢ and n are relatively prime, then we

can conclude that a = b (mod n).
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/ Theorem 10.1 \

A number p > 2 is prime if and only if there is a number 1 < r < p

—1

such that 77~ =1 (mod p), and 7 @ % 1 (mod p) for all prime
divisors q of p — 1.

In fact, we can claim that p > 2 is prime iff there is a number
1 < r < psuch that »~! =1 (mod p), and rha 21 (mod p) for
all proper divisors m of p — 1.




/ Pratt’s Theorem

PRIMES is in NPNcoNP.
1. We know that PRIMES is in coNP.
2. We will show that PRIMES is in NP.

e 13 is prime: by setting r = 2
212 = (213 =162 =32 =27 =1 (mod 13).
13 — 1 =12 = The prime factors are 2 and 3.
"o =26 —=64=—1%1 (mod 13).

A
275 =24 =16=3 21 (mod 13).
. 13 is prime.

Our certificate for 13 being prime is (2;2, 3).
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e 17 is prime: by setting r = 3
316 = (3H)% = (81)* = (—4)* =162 =1 (mod 17).
17 — 1 =16 = The prime factor is only 2.

17—1

372 =3%=16#1 (mod 17).
. 17 is prime.

Our certificate for 13 being prime is (3;2).

11



/

e 91 is not prime:
However, by setting » = 10 we have
109 = 100% = 9% = (9%)!° =1 (mod 91)
91 —1 =90 = 2,45
1075 = 10% = 1000%° = (—1)1 = —1 (mod 91)
10%5 =102 =9 (mod 91).
However, 91 is not prime.
91-1=90=2,3,5

91—-1

1073 =10%" =1 (mod 91)!
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3. How to test whether a” =1 (mod p)?

By the Horner’s rule.

90 = 64 + 16 + 8 + 2 = (1011010),

Hence if we can compute a’,a', a?, a*, a3, ..., a%, we can

O mod p.

compute a’
We can compute a-b mod p in time O(¢?) where £ is the
length of p in binary number.

Hence, we can test whether a™ =1 (mod p) in time O(£°).
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4. The certificate for p being prime is of the form:

-

C(p) = (riq1,C(q1), -, qx, Clar)).

For example,
C(67) = (2;2,(1),3,(22,(1)),11,(8;2,(1), 5, (3;2,(1)))))-
We need to test

(a) P71 =1 (mod p)
(b) q1,q2,--.,qx are the only prime divisors of p — 1.

p—1

(¢) 7 #1 (mod p) for all possible 1.

(d) g;’s are prime.

In the subsequent discussion, we will show that C(p) is in
polynomial length with respect to the length of the binary
representation of p.
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5. We use |a| to denote the number of bits to represent a.

Suppose a = b - ¢, then |b| 4 |c| — 1 <|a| < |b] + |¢].
Hence [lgb| + [lgc| < |lga].
Ifa=b6y-b3---b,,, then we have

lgaJ>Zlgb and\a|>Z]b|— m —1).

~
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4 N

6. The length of C(p) is bounded by 3(|lgp])?.
We need to bound the length of

C(p) = (r;q1,C(q1), - - - qx, Cqw)).

Let S(p) be the length of C(p) and n = |lgp].
Then S(p) <10+ |p| +k+ 250 (65| + 22502 S(@).

( ;27(1)7 )
S gl < |pl+ (k—1) =n+ k.

>S(q) <3> (lgai])® <33 |1gqil)?
<3([lg55+))? <3(n—1)?

4+n+k+n+k+3n-—1)°

- S(p) <
< 114+4n+3n°—6n+3<3n? —2n+ 14 < 3n?

forn > 7.

\ Hence, S(p) < 3(|1gp]|)?. /
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4 N

7. We also have to bound the time complexity for verifying the
certificate.

As a result, one can bound the time in O(n”) where n = |lgp].
Hence PRIMES is in NP.
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4 N

In order to prove Theorem 10.1, we need more knowledge on the

number theory.

Theorem 10.1 A number p > 2 is prime if and only if there is a
—1

number 1 < r < p such that r»~! =1 (mod p), and ra £ 1
(mod p) for all prime divisors g of p — 1.
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/ Notations \

1. p, a prime

2. m divides n if n = mk.

(m,n), the greatest common divisor of m and n
Zyp =1{0,1,2,...,n — 1}, the residues modulo n
¢(n)={m: 1 <m<n,(m,n) =1}

¢(n) = |2(n)]

Z: ={m: 1 <m<n,(m,n)=1}U{0}, the reduced residues

modulo n

N A

Example ®(12) ={1,5,7,11},®(11) ={1,2,3,4,...,10}.
¢(1) = 1.

/
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4 N

Lemma 10.1 ¢(n) =n]],,(1 - ]%)

Corollary If (m,n) =1, then ¢(m -n) = ¢(m) - d(n).

Example If n = pg where p and ¢ are primes. Then

o(n) =n—p—g+1=n(l— )(1-7)
Proof.

By the inclusive-exclusive principle.

Let A, be the set of numbers between 1...n that are divisible by
prime p.

Then ®(n) = A,, NA,,N---NA,, =0-(A,, UA,, U---UA,,).

(%(AMUAPZU---UAW):... /
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/ The Chinese Remaindering Theorem \

Let n =p1---pr.

¢(n) =(p1 —1)(p2 —1) -~ (px — 1)

reveals a more important fact.

There is a one-one correspondence between r and (rq,...,7;) where
r € ®(n) and r; € ®(P;) for all 4.

In fact, r; = r (mod p;) and r € ®(n) — r; € ®(p;), a bijection.
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Lemma 10.2 . ¢(m)=n.

Take n = 12 for illustration. m = 1,2, 3,4, 6, 12.
$(1) + 0(2) + ¢(3) + 9(4) + ¢(6) + ¢(12) = 12.

Proof.

For the case when n = 12.
1 2 3 4 5 6 7 8 9 10 11 12

127 127 127 122 127 127 127 127 127 127 127 12

-
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/ Fermat’s Theorem \

Lemma 10.3 a?~! =1 (mod p) for p1a.
a®™) =1 (mod n) if (a,n) =1

Proof.
1,2,3,...,p—1

{a,2a,3a,...,a(p—1)} ={1,2,3,...,p — 1} since ax = ay implies
r=y (mod p)

(p—1!=a"""-(p-1)

saPbmr =1 (modp)

- /
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/ Number of Roots for Polynomials \

Lemma 10.4 Any polynomial of degree k that is not identically

zero has at most k distinct roots modulo p.

Proof.
Let p(x) be a polynomial of degree k. If x is a root for p(x), then

there is q(z) of degree k — 1 such that

p(z) = (z — 2x)q(x) (mod p).

Any x that is not a root for ¢(x) cannot make g(x) = 0. Therefore
there are at most (k — 1) + 1 = k roots for p(x) by the induction.

N /
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/ Exponent for a number m \

It is the smallest k such that m® =1 (mod p).

e Such k always exists as long as (p,m) =1
since aP~! =1 (mod p).

e k|(p—1).
e If m" =1 (mod p) and m*2 =1 (mod p), then m | k; and
m ‘ kg.
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/ The Primitive Roots for Z, \

2

A number r such that 7, 72,..., 7P~ generates 1,2,...,p — 1.

There always exists a primitive root for any prime.
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4 N

Let us fixed a p.
Define R(k) to be the set of elements in Z, with exponents exactly
equal to k.

Lemma

Proof.
If R(k) # 0, there exists s such that

st,...,s" 1 #£1 and s* = (mod p).

These are all k distinct roots for ¥ = 1 (mod p).

And st € R(k) iff (t, k) = 1, since otherwise (s?)*/¢ =1 for some

d | (k,t). There are exactly ¢(k) such t.

Q‘R(k) = (), the inequality certainly holds. /
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Lemma

[R(k)| = o(k) it k| (p—1).
Proof.

1. Since a?~! =1 (mod p), each a € ®(p) must belong to some
R(k) for some k| (p—1).

3. Zkl(p—n R(k) < Zkl(p—l) p(k) =p—1

4. Hence, all inequalities are in fact equalities.

-
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Lemma

There is an 7 such that r is a primitive root for Z,.

Proof.

1. There is an r such that r € R(p — 1).

2. rtr?2, ... ,rP72 £ 1 and v»~1 =1 (mod p).

—1

3. ri.r?, ..., 7P~ are all distinct.

4. r is a primitive root.
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4 N

Theorem 10.1 A number p > 2 is prime if and only if there is a
—1

number 1 < r < p such that »»~! =1 (mod p), and riT = 1
(mod p) for all prime divisors g of p — 1.

Proof.

If p > 2 is a prime, let r be its primitive root and all conditions on
the only-if part are satisfied.

Conversely, assume p is not a prime.
1. Any 7 satisfies ) =1 (mod p).

2. If rP~1 =1 (mod p), then the exponent of r must divide ¢(p)
and p — 1, and ¢(p) # p — 1.

3. There exists ¢ > 1 such that pT_l is the exponent of r.

p—1

\4. Thus, r «

=1 (mod p) for some q > 1. /
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The Primitive Roots for Z,,

We can extend the idea of primitive to general m (which may not
be a prime). It is a number r such that »%,r2, ..., r®(™) (mod m)
generates ®(m).

Theorem There is a primitive root for m if and only if

m = 2,4, p*, 2p* where p is an odd prime.
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