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coNP

• A problem is in coNP iff its complement is in NP.

• The complement of a decision problem is to interchange the
“yes”/“no” answer for each instance with respect to the
membership problem.

• Let A be a problem in NP. Then any positive instance of A has
a succinct certificate.

• Let B be a coNP problem. Then any negative instance of B

has a succinct disqualification.
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Validity

Given a Boolean formula represented in conjunctive-normal form, is
it true for all truth assignments?

This problem is coNP-complete.
That is, any coNP problem can be reduced to Validity.

• F is valid iff ¬F is unsatisfiable.

• The complement of “¬F is unsatisfiable” is “¬F is satisfiable.”
It is indeed the SAT problem.

• Since SAT is NP-complete, any coNP problem can be reduced
to coSAT.
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Proposition 10.1

If L is NP-complete, then its complement L̄ = Σ∗ − L is
coNP-complete.

Proof.
We have to show that any problem L′ in coNP can be reduced to L̄.

• L̄′ is in NP.

• L̄′ can be reduced to L. That is, x ∈ L̄′ iff R(x) ∈ L.

• The complement of L̄′ can be reduced to L̄

since x 6∈ L̄′ iff R(x) ∈ L̄

• That is, L′ can be reduced to L̄ by the same reduction from L̄′

to L.
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Open Question

NP = coNP?

If P=NP, then NP=coNP. (NP=P=coP=coNP)
However, it is also possible that NP=coNP, even P 6=NP.
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Proposition 10.2

If a coNP-complete problem is in NP, then NP=coNP.

Proof.
Let L be the coNP-complete problem that is in NP.

1. coNP⊆NP:
Since any L′ ∈ coNP can be reduced to L and L is in NP, we
have L′ is in NP.

2. NP⊆ coNP
For any L′′ ∈ NP, asking “whether x 6∈ L′′” is in coNP. This
problem can be reduced to L since L is coNP-complete. Thus,
asking whether x ∈ L′′ can be reduced to the complement of L,
which is in coNP.
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Example 10.2

PRIMES: Determines whether an integer N given in binary is a
prime number.
It is easy to see that PRIMES is in coNP since COMPOSITE is in
NP.
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Notations

• x|y if there is a whole number z with y = xz.

• x - y iff it is not the case for x|y.

• a ≡ b (mod n) iff n|(a− b).
(9 ≡ 14 (mod 5))

• a ≡ a (mod n) (reflexive)

• a ≡ b (mod n) implies b ≡ a (mod n) (symmetric)

• a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n)
(transitive)

• If a ≡ b (mod n) and c ≡ d (mod n), then

1. a + b ≡ c + d (mod n)

2. a− b ≡ c− d (mod n)

3. a · b ≡ c · d (mod n)
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• If a ≡ b (mod n), then ac ≡ bc (mod n) for any b.

• If ac ≡ bc (mod n) and c and n are relatively prime, then we
can conclude that a ≡ b (mod n). (cancellation rule)
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Theorem 10.1

A number p > 2 is prime if and only if there is a number 1 < r < p

such that rp−1 ≡ 1 (mod p), and r
p−1

q 6≡ 1 (mod p) for all prime
divisors q of p− 1.

In fact, we can claim that p > 2 is prime iff there is a number
1 < r < p such that rp−1 ≡ 1 (mod p), and r

p−1
m 6≡ 1 (mod p) for

all proper divisors m of p− 1.
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Pratt’s Theorem

PRIMES is in NP∩coNP.

1. We know that PRIMES is in coNP.

2. We will show that PRIMES is in NP.

• 13 is prime: by setting r = 2
212 = (24)3 = 163 ≡ 33 = 27 ≡ 1 (mod 13).
13− 1 = 12 ⇒ The prime factors are 2 and 3.

2
13−1

2 = 26 = 64 ≡ −1 6≡ 1 (mod 13).
2

13−1
3 = 24 = 16 ≡ 3 6≡ 1 (mod 13).

∴ 13 is prime.
Our certificate for 13 being prime is (2; 2, 3).
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• 17 is prime: by setting r = 3
316 = (34)4 = (81)4 ≡ (−4)4 = 162 ≡ 1 (mod 17).
17− 1 = 16 ⇒ The prime factor is only 2.
3

17−1
2 = 38 ≡ 16 6≡ 1 (mod 17).

∴ 17 is prime.
Our certificate for 13 being prime is (3; 2).
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• 91 is not prime:
However, by setting r = 10 we have
1090 = 10045 ≡ 945 = (93)15 ≡ 1 (mod 91)
91− 1 = 90 ⇒ 2, 45
10

91−1
2 = 1045 = 100015 ≡ (−1)15 ≡ −1 (mod 91)

10
91−1
45 = 102 ≡ 9 (mod 91).

However, 91 is not prime.
91− 1 = 90 ⇒ 2, 3, 5
10

91−1
3 = 1030 ≡ 1 (mod 91)!
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3. How to test whether an ≡ 1 (mod p)?
By the Horner’s rule.

90 = 64 + 16 + 8 + 2 = (1011010)2

Hence if we can compute a0, a1, a2, a4, a8, . . . , a64, we can
compute a90 mod p.
We can compute a · b mod p in time O(`2) where ` is the
length of p in binary number.
Hence, we can test whether an ≡ 1 (mod p) in time O(`3).
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4. The certificate for p being prime is of the form:

C(p) = (r; q1, C(q1), . . . , qk, C(qk)).

For example,
C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1))))).
We need to test

(a) rp−1 ≡ 1 (mod p)

(b) q1, q2, . . . , qk are the only prime divisors of p− 1.

(c) r
p−1
qi 6≡ 1 (mod p) for all possible i.

(d) qi’s are prime.

In the subsequent discussion, we will show that C(p) is in
polynomial length with respect to the length of the binary
representation of p.
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5. We use |a| to denote the number of bits to represent a.
(|a| = blg ac+ 1)
Suppose a = b · c, then |b|+ |c| − 1 ≤ |a| ≤ |b|+ |c|.
Hence blg bc+ blg cc ≤ blg ac.
If a = b1 · b2 · · · bm, then we have

blg ac ≥
m∑

i=1

blg bic and |a| ≥
∑

|bi| − (m− 1).
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6. The length of C(p) is bounded by 3(blg pc)2.
We need to bound the length of

C(p) = (r; q1, C(q1), . . . , qk, C(qk)).

Let S(p) be the length of C(p) and n = blg pc.
Then S(p) ≤ 10 + |p|+ k +

∑
i≥2 |qi|+

∑
i≥2 S(qi).

(C(67) = (2; 2, (1),3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1))))))∑ |qi| ≤ |p|+ (k − 1) = n + k.∑
S(qi) ≤ 3

∑
(blg qic)2 ≤ 3(

∑blg qic)2
≤ 3(blg p−1

2 c)2 ≤ 3(n− 1)2

∴ S(p) ≤ 11 + n + k + n + k + 3(n− 1)2

≤ 11 + 4n + 3n2 − 6n + 3 ≤ 3n2 − 2n + 14 ≤ 3n2

for n ≥ 7.
Hence, S(p) ≤ 3(blg pc)2.
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7. We also have to bound the time complexity for verifying the
certificate.
As a result, one can bound the time in O(n5) where n = blg pc.
Hence PRIMES is in NP.
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In order to prove Theorem 10.1, we need more knowledge on the
number theory.

Theorem 10.1 A number p > 2 is prime if and only if there is a
number 1 < r < p such that rp−1 ≡ 1 (mod p), and r

p−1
q 6≡ 1

(mod p) for all prime divisors q of p− 1.
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Notations

1. p, a prime

2. m divides n if n = mk. (m|n)

3. (m,n), the greatest common divisor of m and n

4. Zn = {0, 1, 2, . . . , n− 1}, the residues modulo n

5. Φ(n) = {m : 1 ≤ m ≤ n, (m,n) = 1} (Euler’s totient function)

6. φ(n) = |Φ(n)|
7. Z∗n = {m : 1 ≤ m < n, (m,n) = 1} ∪ {0}, the reduced residues

modulo n

Example Φ(12) = {1, 5, 7, 11}, Φ(11) = {1, 2, 3, 4, . . . , 10}.
φ(1) = 1.
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Lemma 10.1 φ(n) = n
∏

p|n(1− 1
p ).

Corollary If (m,n) = 1, then φ(m · n) = φ(m) · φ(n).
(multiplicative)

Example If n = pq where p and q are primes. Then

φ(n) = n− p− q + 1 = n(1− 1
p
)(1− 1

q
).

Proof.
By the inclusive-exclusive principle.
Let Ap be the set of numbers between 1 . . . n that are divisible by
prime p. (Ap = {x : 1 ≤ x ≤ n & p|x})
Then Φ(n) = Āp1 ∩ Āp2 ∩ · · · ∩ Āp`

= ¤− (Ap1 ∪Ap2 ∪ · · · ∪Ap`
).

#(Ap1 ∪Ap2 ∪ · · · ∪Ap`
) = · · ·
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The Chinese Remaindering Theorem

Let n = p1 · · · pk.
φ(n) = (p1 − 1)(p2 − 1) · · · (pk − 1)
reveals a more important fact.
There is a one-one correspondence between r and (r1, . . . , rk) where
r ∈ Φ(n) and ri ∈ Φ(Pi) for all i.
In fact, ri ≡ r (mod pi) and r ∈ Φ(n) → ri ∈ Φ(pi), a bijection.
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Lemma 10.2
∑

m|n φ(m) = n.

Take n = 12 for illustration. m = 1, 2, 3, 4, 6, 12.
φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 12.

Proof.
For the case when n = 12.
1
12 ,

2
12 ,

3
12 ,

4
12 ,

5
12 ,

6
12 ,

7
12 ,

8
12 ,

9
12 ,

10
12 ,

11
12 ,

12
12
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Fermat’s Theorem

Lemma 10.3 ap−1 ≡ 1 (mod p) for p - a.
aφ(n) ≡ 1 (mod n) if (a, n) = 1 (Euler’s Theorem)

Proof.
1, 2, 3, . . . , p− 1
{a, 2a, 3a, . . . , a(p− 1)} = {1, 2, 3, . . . , p− 1} since ax ≡ ay implies
x ≡ y (mod p).
(p− 1)! ≡ ap−1 · (p− 1)!
∴ ap−1 ≡ 1 (mod p).
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Number of Roots for Polynomials

Lemma 10.4 Any polynomial of degree k that is not identically
zero has at most k distinct roots modulo p.

Proof.
Let p(x) be a polynomial of degree k. If xk is a root for p(x), then
there is q(x) of degree k − 1 such that

p(x) ≡ (x− xk)q(x) (mod p).

Any x that is not a root for q(x) cannot make q(x) ≡ 0. Therefore
there are at most (k − 1) + 1 = k roots for p(x) by the induction.
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Exponent for a number m

It is the smallest k such that mk ≡ 1 (mod p).

• Such k always exists as long as (p, m) = 1
since ap−1 ≡ 1 (mod p).

• k | (p− 1).

• If mk1 ≡ 1 (mod p) and mk2 ≡ 1 (mod p), then m | k1 and
m | k2.
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The Primitive Roots for Zp

A number r such that r1, r2, . . . , rp−1 generates 1, 2, . . . , p− 1.
There always exists a primitive root for any prime.
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Let us fixed a p.
Define R(k) to be the set of elements in Zp with exponents exactly
equal to k.

Lemma
|R(k)| ≤ φ(k).

Proof.
If R(k) 6= ∅, there exists s such that

s1, . . . , sk−1 6≡ 1 and sk ≡ 1 (mod p).

These are all k distinct roots for xk ≡ 1 (mod p).
And st ∈ R(k) iff (t, k) = 1, since otherwise (st)k/d ≡ 1 for some
d | (k, t). There are exactly φ(k) such t.
If R(k) = ∅, the inequality certainly holds.
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Lemma

|R(k)| = φ(k) if k | (p− 1).

Proof.

1. Since ap−1 ≡ 1 (mod p), each a ∈ Φ(p) must belong to some
R(k) for some k | (p− 1).

2. Thus,
∑

k|(p−1) R(k) = p− 1.

3.
∑

k|(p−1) R(k) ≤ ∑
k|(p−1) φ(k) = p− 1

4. Hence, all inequalities are in fact equalities.
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Lemma
There is an r such that r is a primitive root for Zp.
(r1, r2, . . . , rp−1 generates 1, 2, . . . , p− 1)

Proof.

1. There is an r such that r ∈ R(p− 1).

2. r1, r2, . . . , rp−2 6≡ 1 and rp−1 ≡ 1 (mod p).

3. r1, r2, . . . , rp−1 are all distinct.

4. r is a primitive root.
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Theorem 10.1 A number p > 2 is prime if and only if there is a
number 1 < r < p such that rp−1 ≡ 1 (mod p), and r

p−1
q 6≡ 1

(mod p) for all prime divisors q of p− 1.

Proof.
If p > 2 is a prime, let r be its primitive root and all conditions on
the only-if part are satisfied.
Conversely, assume p is not a prime.

1. Any r satisfies rφ(p) ≡ 1 (mod p). (Euler’s Theorem)

2. If rp−1 ≡ 1 (mod p), then the exponent of r must divide φ(p)
and p− 1, and φ(p) 6= p− 1.

3. There exists q > 1 such that p−1
q is the exponent of r.

4. Thus, r
p−1

q ≡ 1 (mod p) for some q > 1. (Contradiction)
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The Primitive Roots for Zm

We can extend the idea of primitive to general m (which may not
be a prime). It is a number r such that r1, r2, . . . , rφ(m) (mod m)
generates Φ(m).

Theorem There is a primitive root for m if and only if
m = 2, 4, p`, 2p` where p is an odd prime.
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