# Sequence Alignment Algorithms for Run-Length-Encoded Strings

### Guan-Shieng Huang<sup>1</sup> Jia-Jie Liu<sup>2</sup> Yue-Li Wang<sup>3</sup>

<sup>1</sup>National Chi Nan University, Taiwan shieng@ncnu.edu.tw

<sup>2</sup>Shih Hsin University, Taiwan jjliu@cc.shu.edu.tw

<sup>3</sup>National Chi Nan University, Taiwan yuelwang@ncnu.edu.tw

June 27-29, 2008



### Motivation

- Could string processing be done on compressed strings directly?
- Every one knows that data compression can save storage space; the tradeoff is to take more processing time.
- However, in some situations, both time and space can be saved through data compression.



Why is it possible to save both time and space through data compression?

- The size of the input data is reduced after compression.
- In complexity theory, time complexity and space complexity are measured with respect to the input size.
- A faster algorithm is possible on smaller input.



# Run-Length Compression

Let x and y be two strings over a constant-sized alphabet. The size of x is m, being compressed into m' runs. The size of y is n, being compressed into n' runs. (E.g.,  $x = aaabbccc \implies (a, 3)(b, 2)(c, 3)$ )



### What We Have Done

We focused on string processing on run-length-encoded strings. We improved algorithms for solving the following problems:

- the string edit distance problem;
- 2 the pairwise global alignment problem;
- 3 the pairwise local alignment problem;
- **4** the approximate matching problem

under a unified framework.

#### Assumption

- The linear-gap model with arbitrary scoring matrix
- The size of the alphabet is constant



# **Problems Description**

- 1 the string edit distance problem
  - Input: two strings x,y and a substitution matrix  $\delta$  that measures the cost for each edit operation (i.e. insertion, deletion, and substitution) performed on x
  - Output: the minimum sum of costs that can transform x into y
- 2 the pairwise global alignment problem
  - Input: two strings x, y and a scoring matrix  $\delta$  that measures the aligned score of any two characters from the alphabet
  - Output: inset appropriate spaces (or gaps) into x and y, to make them equal-length, such that the aligned scored is maximized
- 3 the pairwise local alignment problem: find substrings x' of x and y' of y such that the alignment score of x' and y' is maximized
- **4** the approximate matching problem:
  - Input: a text string T, a pattern string P, and a number K
  - Output: locate all end-positions of substrings from T such that the edit distances of each candidate against P is at most K

# Our Contribution

- **1** Edit distance problem, global alignment problem:  $O(\min\{m'n, mn'\})$  time
  - O(m'n + mn') time (Mäkinen & Navarro & Ukkonen, 2003) (Crochemore & Landau & Ziv-Ukelson, 2003)
  - $O(\min\{m'n, mn'\})$  time for the edit distance problem with unit cost (Liu & Huang & Wang & Lee, 2007)
- **2** Local alignment problem:  $O(\min\{m'n, mn'\})$  time
  - O(m'n + mn') time only for LZW compression (Crochemore & Landau & Ziv-Ukelson, 2003)
- **3** Approximate matching: O(n'm)
  - O(n'mm') time under some restriction (Mäkinen & Navarro & Ukkonen, 2003)

一日、

- Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate matching of run-length compressed strings. Algorithmica (2003)
- Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing (2003)
- Liu, J.J., Huang, G.S., Wang, Y.L., Lee, R.C.T.: Edit distance for a run-length-encoded string and an uncompressed string. Information Processing Letters (2007)
- Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a longest common subsequence between a run-length-encoded string and an uncompressed string. Journal of Complexity (2008)

# Related Work

- Wagner & Fischer (1974), Levenshtein (1966): Defined the string-to-string correction problem.
- Longest-common-subsequence problem on run-length-encoded strings
  - Bunke & Csirik (1995): O(m'n + mn') time
  - Apostolico & Landau & S. Skiena (1999):  $O(m'n' \lg(m'n'))$  time
  - Mitchell (1997):  ${\rm O}((m'+n'+d)\lg(m'+n'+d))$  where d is the number of matches of runs
- Extensions
  - Arbell & Landau & Mitchell (2002):  ${\rm O}(m'n+mn')$  time for the edit distance problem with unit cost
  - Mäkinen & Navarro & Ukkonen (2003): O(m'n + mn') time for the general edit distance problem
  - Crochemore & Landau & Ziv-Ukelson (2003):  ${\rm O}(m'n+mn')$  time for the alignment problem
- Liu & Huang & Wang & Lee (2007): O(min{m'n, mn'}) time for the edit distance problem with unit cost

イロト 不得下 イヨト イヨト

# The String Edit Distance Problem

- Input: two run-length-compressed strings x and y over a constant-sized alphabet  $\Sigma$ .
- A substitution matrix  $\delta : (\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \longrightarrow \mathbb{R}$  is given to measure the cost of each character insertion, deletion, and substitution.
- Output: the minimum cost of edit operations that can transform  $\boldsymbol{x}$  into  $\boldsymbol{y}.$
- Its time complexity is  $O(\min\{m'n, mn'\})$ .

# Basic idea

- The edit distance problem can be reduced to the shortest path problem on edit graphs.
- The goal is to find a shortest path from (0,0) to (m,n).





Guan-Shieng Huang et al. (NCNU)

3.5



Hirschberg in 1975 observed that

$$O_R(j) = \min_{1 \le i \le j} \{ I_R(i) + DIST(i,j) \} \quad \text{ for } 1 \le j \le n$$

where DIST(i, j) is the cost of the optimal (i.e. shortest) path starting from  $I_R(i)$  and ending at  $O_R(j)$  where  $1 \le i \le j \le n$ .

Guan-Shieng Huang et al. (NCNU)

COCOON 2008 12 / 31

$$O_R(j) = \min_{1 \leq i \leq j} \{ I_R(i) + DIST(i,j) \} \quad \text{ for } 1 \leq j \leq n$$

can be instantiated by

$$E(x'a^k, y[1..j]) = \min_{0 \le i \le j} \left\{ E(x', y[1..i]) + E(a^k, y[(i+1)..j]) \right\}$$

- $O_R(j) = E(x'a^k, y[1..j])$ = the edit distance of  $x'a^k$  and y[1..j].
- $DIST(i, j) = E(a^k, y[(i+1)..j])$ = the edit distance of  $a^k$  and y[(i+1)..j].



Guan-Shieng Huang et al. (NCNU)

### Observations

$$O_R(j) = \min_{1 \le i \le j} \{ I_R(i) + DIST(i,j) \} \quad \text{ for } 1 \le j \le n$$
$$E(x'a^k, y[1..j]) = \min_{0 \le i \le j} \left\{ E(x', y[1..i]) + E(a^k, y[(i+1)..j]) \right\}$$

- **1** DIST(i, j) can be evaluated in O(1) time for each i and j.
- 2 Let i<sup>\*</sup>(j) be the parameter that minimizes the recurrence for a specific j. Then all i<sup>\*</sup>(j) for 1 ≤ j ≤ n can be computed in O(n) time.

### Observation I

How to evaluate  $DIST(i, j) = E(a^k, y[(i+1)..j])$  for each i and j in O(1) time?

- E(aaaaa, abcaa) =?
- E(aaaaa, abca) =?
- E(aaaaa, abcaaa) =?

After preprocessing on string y,  $E(a^k, y[(i+1)..j])$  can be answered in O(1) time.



#### Lemma

Let the length of z be |z| and the number of occurrences of a in z be  $\sigma_a(z)$ . Then

•  $0 \le s \le 2d$ :  $E(a^k, z) = d \max\{|z|, k\} - (d - s) \min\{|z|, k\} - s \min\{\sigma_a(z), k\}$ •  $s \ge 2d \ge 0$ :  $E(a^k, z) = d(|z| + k) - 2d \min\{\sigma_a(z), k\}$ 

where s is the cost for a substitution and d is the cost for an indel.

The general case for any substitution matrix, even with negative weights, can be handled similarly.

Guan-Shieng Huang et al. (NCNU)

(日) (同) (三) (三)

### **Observation II**

Find all  $i^*(j)$  for  $1 \le j \le n$  in O(n) time.

$$O_R(j) = \min_{1 \le i \le j} \{ I_R(i) + DIST(i,j) \} \quad \text{ for } 1 \le j \le n$$

Let  $OUT(i, j) = I_R(i) + DIST(i, j)$ . Then the matrix OUT(i, j) is a Monge matrix.



 国立登市国際大学 同 ・ ・ ミ ・ ミ ・ つ ロ へ

# The Monge Property

Definition

An  $m \times n$  matrix  $M = (c_{i,j})_{m \times n}$  is called Monge iff

 $c_{i,j} + c_{i',j'} \le c_{i,j'} + c_{i',j}$ 

÷

*i'* 

for all  $1 \le i \le i' \le m$  and  $1 \le j \le j' \le n$ .

Named after Gaspard Monge (1746–1818) by A. J. Hoffman in 1961.

< 回 ト < 三 ト < 三 ト

### A Geometric Interpretation of the Monge Property

This property is a consequence of the triangle inequality.



 $d(i,j) + d(i',j') \le d(i,j') + d(i',j)$ 



### Lemma (Aggarwal and Park, 1987)

All of the row minima and column minima in an  $m \times n$  Monge matrix can be determined in time O(m + n), provided that each entry in the matrix can be accessed in time O(1).

#### Remarks

- When there are many minima in a row or column, we can simply choose the first one.
- 2 All of the row and column maxima can also be found in the same time bound.



$$O_R(j) = \min_{1 \le i \le j} \{ I_R(i) + DIST(i, j) \} \text{ for } 1 \le j \le n$$
$$OUT(i, j) = I_R(i) + DIST(i, j) .$$

# Lemma (Aggarwal and Park, 1988)

The matrices DIST and OUT are Monge.



Guan-Shieng Huang et al. (NCNU)

A D A D A D A

國立暨南國際大學

#### Lemma

All values on the bottom of a strip can be evaluated in O(n) time.



 $O_R(j) = \min_{1 \leq i \leq j} \{I_R(i) + DIST(i,j)\} \quad \text{ for } 1 \leq j \leq n$ 

#### Theorem

The edit distance problem on run-length-encoded strings can be solved in  $O(\min\{m'n, mn'\})$  time.

国正登市国际大学

# Local Alignment Algorithm



Guan-Shieng Huang et al. (NCNU)

COCOON 2008 23 / 31

國立暨南國際大學

### Question?



Guan-Shieng Huang et al. (NCNU)

### References I

- A. Apostolico, M. J. Atallah, L. L. Larmore, and S. Mcfaddin. Efficient parallel algorithms for string editing and related problems. SIAM Journal on Computing, 19(5):968–988, 1990.
- A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilher. Geometric applications of a matrix-searching algorithm. *Algorithmica*, 2(1):195–208, 1987.
- O. Arbell, G. M. Landau, and J. S. B. Mitchell.
  Edit distance of run-length encoded strings.
  Information Processing Letters, 83(6):307–314, 2002.

A. Apostolico, G. M. Landau, and S. Skiena. Matching for run-length encoded strings. *Journal of Complexity*, 15(1):4–16, 1999.



A D A D A D A

# References II

### A. Aggarwal and J. Park.

Notes on searching in multidimensional monotone arrays.

In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (FOCS 1988), pages 497–512.

### H. Bunke and J. Csirik.

An improved algorithm for computing the edit distance of run-length coded strings.

Information Processing Letters, 54(2):93–96, 1995.

### G. Benson.

A space efficient algorithm for finding the best nonoverlapping alignment score.

Theoretical Computer Science, 145(1-2):357-369, 1995.



• • = • • = •

# References III



W. W. Bein, M. J. Golin, L. L. Larmore, and Y. Zhang. The Knuth-Yao quadrangle-inequality speedup is a consequence of total-monotonicity.

In Proceedings of the 7th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pages 31–40.

R. E. Burkard, B. Klinz, and R. Rudolf.
 Perspectives of monge properties in optimization.
 Discrete Applied Mathematics, 70(2):95–161, 1996.

### R. E. Burkard.

Monge properties, discrete convexity and applications.

*European Journal of Operational Research*, 176(1):1–14, 2007.



# References IV



M. Crochemore, G. M. Landau, and M. Ziv-Ukelson.

A subquadratic sequence alignment algorithm for unrestricted scoring matrices.

SIAM Journal on Computing, 32(6):1654–1673, 2003.

D. Gusfield.

Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

### D. S. Hirschberg.

A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18(6):341–343, 1975.



### References V

J. W. Kim, A. Amir, G. M. Landau, and K. Park.

Computing similarity of run-length encoded strings with affine gap penalty.

In Proceedings of 12th String Processing and Information Retrieval (SPIRE 2005), volume 3772 of Lecture Notes in Computer Science, pages 429–435. Springer-Verlag, 2005.

S. K. Kannan and E. W. Myers.

An algorithm for locating nonoverlapping regions of maximum alignment score.

SIAM Journal on Computing, 25(3):648–662, 1996.

C. Ledergerber and C. Dessimoz.

Alignments with non-overlapping moves, inversions and tandem duplications in  ${\cal O}(n^4)$  time.

Journal of Combinatorial Optimization, 2007. (to appear).

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# References VI

### V. I. Levenshtein.

Binary codes capable of correcting, deletions, insertions and reversals. *Soviet Physics Doklady*, 10:707–710, 1966.

J. J. Liu, G. S. Huang, Y. L. Wang, and R. C. T. Lee. Edit distance for a run-length-encoded string and an uncompressed string.

Information Processing Letters, 105(1):12–16, 2007.

J. J. Liu, Y. L. Wang, and R. C. T. Lee.

Finding a longest common subsequence between a run-length-encoded string and an uncompressed string.

Journal of Complexity, 24(2):173–184, 2008.

G. M. Landau and M. Ziv-Ukelson. On the common substring alignment problem. *Journal of Algorithms*, 41(2):338–359, 2001.



伺下 イヨト イヨト

# References VII

### J. Mitchell.

A geometric shortest path problem, with application to computing a longest common subsequence in run-length encoded strings. Technical report, SUNY Stony Brook, 1997.

V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length compressed strings. *Algorithmica*, 35(4):347–369, 2003.

### 🔋 J. P. Schmidt.

All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM Journal on Computing, 27(4):972–992, 1998.

R. A. Wagner and M. J. Fischer.
 The string-to-string correction problem.
 *Journal of the ACM*, 21(1):168–173, 1974.

