
Parallel Computation
Final Report

Dec. 30, 2003 ∼ Jan. 27, 2004

Problem 1 (4.14) A number s0 and four sequences of numbers {a1, a2, . . . , an}, {b1, b2, . . . , bn},
{d1, d2, . . . , dn}, and {e1, e2, . . . , en} are given. Suppose we have the following recurrence

si = (aisi−1 + bi)/(eisi−1 + di).

Show how the sequence s1, s2, . . . , sn can be computed in parallel in O(lg n) time under the
PRAM model.

Problem 2 (4.18) In a Fibonacci sequence, the first two numbers are equal to 1, and each
subsequent number is the sum of the previous two. Use prefix computation to generate the first
n Fibonacci numbers.

Problem 3 (4.20) A sequence of pairs (li, ri), i = 1, 2, . . . , n, is given, representing intervals
on a horizontal line, with li and ri the left and right endpoints, respectively, of interval Ji. The
left endpoint li is contained in interval Jk if lk ≤ li ≤ rk. It is required to determine, for each li,
i = 1, 2, . . . , n, the number of intervals in which it is contained. Show how prefix computation
can be used to solve this problem.

Problem 4 (4.21) Given a polynomial g(x) of degree n, it is required to evaluate g at points
hε where ε is an arbitrary real and h is an integer taking consecutive values h = a, a + 1, . . . , b,
for two given integers a and b, a < b. Suggest an algorithm for solving this problem using prefix
computation.

Problem 5 (4.22) A two-dimensional array I of numbers is given. It is required to find a
rectangular sub-array of I with the largest sum among all such sub-array of I. Use prefix
computation to solve this problem on a PRAM. Analyze the running time of your algorithm as
a function of the number of rows and columns of I.

Problem 6 (4.25) In Section 4.9.1, a lower bound of Ω(n lg n) was derived on the number
of operations required to perform GPG when ≺ and ∗ are < and +, respectively. Can similar
lower bounds be derived using other linear and other binary operations?

Problem 7 (4.29) Extend the problem of computing maximal points to a set of points in a
three-dimensional space. Then show how the problem can be solved using GPC.

Problem 8 Suppose we have designed a PRAM algorithm with running time O(n
p lg lg p+lg p)

where n is the problem size and p is the number of processors used in solving this problem. How
many processors should we use in order to minimize the required time for this PRAM algorithm?

Problem 9 (5.5) A binary sequence of length n consisting of a (possibly empty) string of 0’s
followed by a (possibly empty) string of 1’s.

(a) Given a PRAM with N processors, 1 ≤ N ≤ n, describe an algorithm for determining the
number of 1’s in the sequence.



(b) Repeat (a) for the case where the sequence consisting of a string of 0’s, followed by a
string of 1’s, followed by a string of 0’s.

Problem 10 (5.10) Let X and Y be two sorted sequences of numbers of length n and m,
respectively.

(a) Develop a RAM algorithm for finding the kth smallest element among all elements of X
and Y .

(b) Use the algorithm in (a) to obtain a PRAM algorithm for merging X and Y into a third
sorted sequence Z of length n + m.

Problem 11 (5.13) Can you find an algorithm for selecting the kth smallest element of a
sequence of n numbers S = {s1, s2, . . . , sn} that uses O(n/logεn) processors and runs in O(logε n)
time, for some 0 ≤ ε ≤ 1?

Problem 12 (5.17) Use algorithm RAM SELECT to design a sequential divide-and-conquer
algorithm for computing the convex hull of a set of n points in the plane.

Problem 13 (5.22) For a set S of n points in the plane, it is required to determine which
two points are closest to one another. Describe and analyze a RAM algorithm for solving this
problem based on the divide-and-conquer approach.

Problem 14 (5.23) Solve the following recurrence

q(1) = 1,
q(b) = 3q(b/2) + ab,

where a is a constant.

Problem 15 (5.24) Given two sequences {a1, a2, . . . , an}, where a1 = 0, and {b1, b2, . . . , bn},
a closed-form solution to the first-order linear recurrence

x1 = b1,

xi = aixi−1 + bi, i = 2, 3, . . . , n,

is given by

xi =
i∑

j=0




i∏

k=j+1

ak


 bj

for i = 2, 3, . . . , n. Design a parallel divide-and-conquer approach for computing x2, x3, . . . , xn.

Problem 16 (5.26) Given a bipartite graph G, it is required to color the edges of G with a
minimum number of colors such that each edge is assigned a color and no two edges adjacent to
the same vertex receive the same color. Design a parallel divide-and-conquer algorithm to solve
this problem.



Problem 17 (6.1) Suppose that we are given m directed and rooted binary trees with a total
of n vertices. Each vertex has a pointer to its parent. The trees are identified by their roots,
but no vertex (unless it is a root) knows the identity of the tree to which it belongs. Design an
algorithm that allows each vertex to know the identity of its tree, and analyze the processor and
time requirements of your algorithm.

Problem 18 (6.7) A method is given in Section 6.3.3 for determining the level of a vertex in
a rooted tree. Suggest alternative ways to perform this computation. (Hints: Try using function
pos, preorder, and parent.)

Problem 19 (6.8) Suppose that each vertex in a rooted directed tree DT knows its parent.
Design a PRAM algorithm (different from the one given in Section 6.3.3) for enumerating the
descendants of each vertex in DT (i.e., to evaluate des(vj)). (Hints: Use pointer jumping.)

Problem 20 (6.10) Let a directed and rooted complete binary tree with n leaves be given.
Each vertex stores a number and points to its parent, with the root’s pointer equal to nil. It is
required to perform a prefix computation on the tree such that each vertex stores the minimum
of all numbers in its subtree. Design a parallel algorithm in O(lg lg n) time. Generalize your
algorithm so that it runs in O(lg n) time on arbitrary trees.

Problem 21 (6.14) Prove by induction on the number of nodes, that the algorithm of Sec-
tion 6.3.2 builds an Euler tour and not several small cycles.

Problem 22 (6.17) As defined in Section 4.10.3, the inorder traversal of a rooted binary tree
visits the vertices in the following order: The left subtree is traversed recursively in inorder,
then the root is visited, and finally, the right subtree is traversed recursively in inorder. Given a
binary tree T with n nodes, show that how the Euler tour technique can be used to number the
vertices of T in the order of the inorder traversal of T . Analyze the running time and processor
requirements of your algorithm.

Problem 23 (6.18) Suppose that the vertices of a rooted complete binary tree T have been
assigned inorder numbers, as in the previous problem. Show that the lowest common ancestor
of any pair of vertices of T (as defined in Section 6.3.4) can be obtained in constant time by one
processor. Here we assume that any reasonable word operation takes constant time.

Problem 24 (6.19) The algorithm of Section 6.3.4 solves the interval minima problem in
O(lg n) time using O(n) processors.

(a) Show that this algorithm is not cost optimal by describing an O(n)-time sequential algo-
rithm to solve the interval minima problem.

(b) Obtain a cost-optimal PRAM algorithm for this problem — that is, an algorithm which
runs in O(lg n) time using O(n/ lg n) processors — based on the following approach:

(i) Divide the sequence S into n/ lg n subsequences, and each of size lg n.
(ii) Solve the interval minima problem for each subsequence sequentially, using the opti-

mal algorithm developed in (a).
(iii) Compute the prefix and suffix minima of each subsequence of S; let ai be the smallest

element of the ith subsequence.
(iv) Apply the algorithm of Section 6.3.4 to the sequence {a1, a2, . . . , an/ lg n}.


