Multiple Alignment

Guan-Shieng Huang
Mar. 18, 2003

What is a multiple alignment

$$
\begin{array}{cccccccc}
\mathbf{A} & \mathbf{C} & \cdot & \cdot & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{B} \\
\cdot & \mathbf{C} & \mathbf{A} & \mathbf{D} & \mathbf{B} & \cdot & \mathbf{D} & \cdot \\
\mathbf{A} & \mathbf{C} & \mathbf{A} & \cdot & \mathbf{B} & \mathbf{C} & \mathbf{D} & .
\end{array}
$$

An alignment of globins produced by CLUSTAL

VELT	PEEKSAVTALWGK	VN	VD	--EVGOEALGRLIVV	YP	WTat
-----VQLS	GEEKAAVLALILDK	VF	EE	--EvGgealcrilv	YP	WTGA
-VLS	PADKTNVKAAHGK	vg	AH	AGEYGAEALERMFLS	FP	TTKT
----VLS	AADKTNVKAAWSK	VG	CH	AGEYGAEALERMFLG	FP	TTKT
PIVDTGSVAPLS	AAEKTKIRSAWAP	VY	SD	YETSGVDILVKFFTS	TP	AAEE
-VLS	EGEWQLVLHVWAK	VE	AD	VAGHGQDILIRLFKS	HP	ETLE
-- GALT	ESqAALVKSShEE	FN	AN	IPKHTHRFFILVLEI	AP	AAKD

FFESFGDLSTPDAVMGN	PKVKAHGKKVLLGAFSDG-	--L.	A	KG	TFAT--LSELACDKLHVD
FFDSFGdL ${ }^{\text {a }}$ (fPGAVMGN	PK	V	HHLD	KG	TFAA--LSELRCDKLIVD
YFPHF-DLSH----GS	AQVKGHGGKKVAD	\cdots	AHVDDM	PN	ALSA--LSDLAAHKLAVD
YFPHF-DLSH-----GS	AQVKAHGKKVGDALTNA-	--V	GHLDD	PG	ALSN--LSDLAAHKLRYD
FFPKFKGLTTADELKKS	ADVRWHAERIIDAVDDA-	--V	ASMDDT	EN	MSSMKDLSGRHA
KFDRFKHLLKTEAEMKAS	EDLKKHGVTVLTALGAI-	--L	Kкксен	EA	ELKP--LAQSEATXHKIP
LFSSFLKGGTSEVPQNN	PELGAHAGKVFKLVYEAA	IQL	EVTGY	AS	DATLKNLGSVFYSKGW

PENFRLLGNVLVCVLAHH	FGKEFTPPVQA	AYQKVVAGVANALA	HKYH-
PENFRLL.GNVLVVVLARH	FGKDFTPELQA	SYQKVVAGVANALA	HKY\%
PVNFKLLSHCLLVTLAAH	LPAEFTPAVHA	SLDKFLASVSTVLT	SKYR
PVNFKLLSHCLLSTLAVH	LPNDFTPAVHA	SLDKFLSSVSTVLT	SKYR------
PEYFKVLAAVIADTVAAG	D---------A	GFEKLLPMICILLR	SAY
IKYLEFISEALIHVLHSR	HPGDFGADAQG	AMNKALELFRKDIA	AKYKELGYQG
DAHFPVVKEAILKTIKEV	VGAKUSEELNS	AWTIAYDELAIVIK	---KEmDDA-

An alignment of ten I-set immunoglobin superfamily

161k	ILDMDVVEGSAARFDCRVEGY--PDPEVMWFKDDNP=-VKESR--.-HPO
AXO1 Rat	RDPVKTHEGWGVML PCNPPAHY - PGLSYRWLLNEFPNFIPTDGR--- HPV
AXO1_RAT	ISDTEADIGSNLRWGCAAAGK--PRPMVRWLPNGEP--LASON---RVE
AXO1_RAT	RRLIPAARGGEISILCQPRAA --PKATILWSKGTEI--LGNST--- RVT
ANOI_PAT	DINVGDNLTLQCHASHDPTMDLTFTWILDDFPIDFDKPGGHYRRAS
NCA2_HUMAN	PTPQEFREGEDAVIVCDVVSS--LPPTI IWKHKGRD--VILRKDV--RFI
NCA2_HUMAN	PSQGEISVGESKEFLCQVAGDA-KDKDISWFSPNGEK-LTPNOO---RIS
NCA2_HUMAN	IWNATANLGQSVILVCDAEGF--PEPTMSWTKDGEQ--IEOEEDDE-KYI
NRG_DROME	RRQSLALRGREMELFCIYGGT--PLFQTVWSKDGQR--IOWSD----RIT
ARG_DROME	PONYEVAAGQSATFRCNEAHDDTLEIEIDWWKDGQS--IDPEAQP--RFV
consensus:	
structure:	
1t1k	IDYDEEGNCSLTISEVCGDDDAKYTCKAVNSL----GEATCTAELLVET
AXO1-RAT	SQTT----GNLYIARTMASDLGNYSCLATSHMDFSTKSVFSKFAOLNLAA
AXO1_PAT	VLA----GDLRFSKLSLEDSGMYQCVAENKH----GTIYASAELAVOA
AXO1_RAT	VTSD----GTLIIRNISRSDEGKYTCFAENEV----GKANSTGILSVRD
AXO1_RAT	ARETI---GDLTILNAHVRHGGKYTCMAQIVV----DGTSKEATVLVRG
NCA2_HUMAN	VLSN---NYLQIRGIKKTDEGTYRCEGRILARG---EINFEDIQVIVNV
NCA2_HUMAN	VVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDG---SESEATVNVKIFQ
NCA2_HUMAN	FSDDSS---QLTIKKVDKNDEAEYICIAENKA----GEODATIHLKVFA
NRG_DROME	QGHYG---KSLVIRQTNFDDAGTYTCDVSNGVG----NAQSFSIILNVNS
NRG_DROME	KTND---NSLTIAKTMELDSGEYTCVARTRL-----DEATARANLIVOD
zonsensus:	

Motivation

1. Protein databases are often categorized by protein families.
How can we identify a newly sequenced protein?
2. Alu repeat is approximately 300 bps and appears over 600000 times in the human genome.
3. A multiple alignment may suggest

- a common structure of the protein products
- a common function
- a common evolutionary source.

Issues

- How to define meaningful scoring function for an alignment?

1. evolutionary correct alignment - more difficult!
2. structure alignment

- How to find the best alignment? By algorithms.

Three types of alignment problems

1. DNA
2. protein (joined by disulfide bond)
3. RNA - more difficult due to long-range correlation

In this lecture, we focus on alignment problems of sequences of DNAs or proteins.

Formulation

1. Input: k sequences $S_{1}, S_{2}, \ldots, S_{k}$
2. Output: $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{k}^{\prime}$ of equal length such that S_{i}^{\prime} is obtained from S_{i} by inserting spaces.
3. Goal: For each column of the alignment, we have a score. Our goal is to optimize the overall score.
Example: $\left\{\begin{array}{ccccccccc}S_{1}^{\prime}: & \mathbf{A} & \mathbf{C} & . & . & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{B} \\ S_{2}^{\prime}: & . & \mathbf{C} & \mathbf{A} & \mathbf{D} & \mathbf{B} & . & \mathbf{D} & . \\ S_{3}^{\prime}: & \mathbf{A} & \mathbf{C} & \mathbf{A} & . & \mathbf{B} & \mathbf{C} & \mathbf{D} & .\end{array}\right.$
Here we assume that individual columns are statistically independent, and hence the overall score is the sum of scores in individual columns.

Algorithm - for $k=3$

1. $S_{1}=x_{1} x_{2} \ldots x_{n_{1}}$

$$
S_{2}=y_{1} y_{2} \ldots y_{n_{2}}
$$

$$
S_{3}=z_{1} z_{2} \ldots z_{n_{3}}
$$

2. $D\left(i_{1}, i_{2}, i_{3}\right)$: the best score for aligning the prefixes of length i_{1}, i_{2}, i_{3} of S_{1}, S_{2}, S_{3}, respectively.
3. $\sigma\left(x_{i_{1}}, y_{i_{2}}, z_{i_{3}}\right)$ the distance to align $x_{i_{1}}, y_{i_{2}}, z_{i_{3}}$ in one column.
4. We have

$$
D\left(i_{1}, i_{2}, i_{3}\right)=\min \left\{\begin{array}{l}
D\left(i_{1}-1, i_{2}-1, i_{3}-1\right)+\sigma\left(x_{i_{1}}, y_{i_{2}}, z_{i_{3}}\right) \\
D\left(i_{1}-1, i_{2}-1, i_{3}\right)+\sigma\left(x_{i_{1}}, y_{i_{2}},-\right) \\
D\left(i_{1}-1, i_{2}, i_{3}-1\right)+\sigma\left(x_{i_{1}},-, z_{i_{3}}\right) \\
D\left(i_{1}, i_{2}-1, i_{3}-1\right)+\sigma\left(-, y_{i_{2}}, z_{i_{3}}\right) \\
D\left(i_{1}-1, i_{2}, i_{3}\right)+\sigma\left(x_{i_{1}},-,-\right) \\
D\left(i_{1}, i_{2}-1, i_{3}\right)+\sigma\left(-, y_{i_{2}},-\right) \\
D\left(i_{1}, i_{2}, i_{3}-1\right)+\sigma\left(-,-, z_{i_{3}}\right)
\end{array}\right.
$$

and $D(0,0,0)=0$.
Note that we minimize the total distance of the alignments.

Complexity

- time $=O\left(n_{1} n_{2} n_{3} \cdot\left(2^{3}-1\right)\right)$
time $=O\left(2^{k} \cdot \prod_{j=1}^{k} n_{j}\right)$ for any k
Hence the DP algorithm for MSA is in fact a pseudo-polynomial algorithm.
- space $=O\left(n_{1} n_{2} n_{3}\right)$
space $=O\left(\prod_{j=1}^{k} n_{j}\right)$ for any k.
- the problem is NP-complete even for the Sum-of-pairs
(Wang \& Jiang, 1994)

To prove that a computational problem is NP-hard, we need

- to reduce an NP-complete (hard) problem to this problem.

When a computational problem is NP-hard, we deal with it by

- heuristic: convince other people by experiments
- approximation: how to analyze the performance
- randomization: how to design a reasonable algorithm.

Famous NP-complete problems

1. Satisfiability: Test whether a logical formula given in conjunctive normal form is satisfiable.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee \neg x_{1}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \cdots
$$

2. Traveling Salesman Problem: Find the shortest tour in a graph.
3. 3-coloring: Ask whether a graph can be colored by three colors.
4. Max-clique: Find a maximum clique in arbitrary graph.
5. Max-Cut
6. Knapsack problem

Notations

$D(X, Y)$: the pariwise distance from X to Y $d_{\mathcal{M}}(X, Y)$: the distance from X to Y in some alignment \mathcal{M}

We usually write $d_{\mathcal{M}}(X, Y)$ as $d(X, Y)$ when the alignment \mathcal{M} is implicitly assumed.
Note that $D(X, Y) \leq d(X, Y)$ always holds.

Suppose we have an alignment :

$S_{1}^{\prime}:$	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	
$S_{2}^{\prime}:$	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	
$S_{3}^{\prime}:$	\mathbf{c}	\mathbf{b}	\mathbf{c}	\mathbf{b}	\mathbf{c}	\mathbf{b}	\mathbf{c}	\mathbf{b}	
	$\mathbf{2}$	distance $=16$							

However, the pairwise distance between S_{1} and S_{2} is

$S_{1}:$	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{c}	
$S_{2}:$	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	distance $=4$

For S_{1}, S_{3}, it is

$$
\begin{array}{lllllllllll}
S_{1}: & \mathbf{a} & \mathbf{c} & \mathbf{a} & \mathbf{c} & \mathbf{a} & \mathbf{c} & \mathbf{a} & \mathbf{c} & - & \\
S_{3}: & - & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \\
\hline & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \text { distance }=\mathbf{5}
\end{array}
$$

And for S_{2}, S_{3}, it is
$S_{2}: ~ a \quad b \quad a \quad b \quad a \quad b \quad a \quad b$
$\begin{array}{lllllllll}S_{3}: & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b}\end{array}$
$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \text { distance }=4\end{array}$
We can see that $D\left(S_{1}, S_{2}\right)+D\left(S_{1}, S_{3}\right)+D\left(S_{2}, S_{3}\right)=$ $4+5+4=13<16=d\left(S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}\right)$.

Multiple alignment problems

1. Distance from consensus:

Find a center string C such that $\Sigma D\left(S_{i}, C\right)$ is minimum.
2. Sum-of-pairs:

Minimize $\Sigma_{i<j} d_{\mathcal{M}}\left(S_{i}, S_{j}\right)$ for all possible alignment M.
$\left(\sigma\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)=d\left(x_{i_{1}}, x_{i_{2}}\right)+d\left(x_{i_{1}}, x_{i_{3}}\right)+d\left(x_{i_{2}}, x_{i_{3}}\right)\right)$
3. Evolutionary tree alignment:

Optimize the cost of an evolutionary tree.
(E.g. minimum spanning tree)

Sum-of-pairs problem

- Input: a set of sequences $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$
- Output: compute a global multiple alignment \mathcal{M} with minimum sum-of-pairs score
Example: $\mathcal{M}=\left\{\begin{array}{ccccccccc}S_{1}^{\prime}: & \mathbf{A} & \mathbf{C} & . & . & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{B} \\ S_{2}^{\prime}: & . & \mathbf{C} & \mathbf{A} & \mathbf{D} & \mathbf{B} & . & \mathbf{D} & . \\ S_{3}^{\prime}: & \mathbf{A} & \mathbf{C} & \mathbf{A} & . & \mathbf{B} & \mathbf{C} & \mathbf{D} & .\end{array}\right.$
for $k=3$.
$\left.d\left(S_{1}^{\prime}, S_{2}^{\prime}\right)+d\left(S_{1}^{\prime}, S_{3}^{\prime}\right)+d\left(S_{2}^{\prime}, S_{3}^{\prime}\right)\right)=5+2+3=10$.
(equal $=0$, not equal $=1$)

Branch \& bound heuristic for the DP algorithm of the Sum-of-pairs:

- Carrillo \& Lipman (1988)
- The idea was implemented in the famous problem MSA Lipman, Altshul, Kececiogly, 1989
- MSA can align 6 sequences of length ~ 200 in reasonable time.

Let \mathcal{M} be any multiple alignment of \mathcal{S}.
Let $\widehat{\mathcal{M}}$ be an optimal multiple alignment of \mathcal{S}.
(Hence, $\Sigma_{i<j} d_{\widehat{\mathcal{M}}}\left(S_{i}, S_{j}\right) \leq \Sigma_{i<j} d_{\mathcal{M}}\left(S_{i}, S_{j}\right)$.)
And also, $D\left(S_{i}, S_{j}\right) \leq d_{\mathcal{M}}\left(S_{i}, S_{j}\right)$ for all \mathcal{M}.
Suppose an upper bound $\sigma(\mathcal{S})$ of the best alignment is given. For any s, t, we have

$$
\begin{aligned}
\sigma(\mathcal{S}) & \geq \Sigma_{i<j} d_{\widehat{\mathcal{M}}}\left(S_{i}, S_{j}\right) \\
& \geq \Sigma_{i<j} D\left(S_{i}, S_{j}\right)-D\left(S_{s}, S_{t}\right)+d_{\widehat{\mathcal{M}}}\left(S_{s}, S_{t}\right)
\end{aligned}
$$

$D\left(S_{i}, S_{j}\right)$ can be evaluated by the optimal pairwise alignment algorithm. Thus, $d_{\widehat{\mathcal{M}}}\left(S_{s}, S_{t}\right)$ has an upper bound on the s, t-plane.

Figure 6.3 Carrillo \& Lipman's algorithm allows the search for optimal alignments to be restricted to a subset of the multidimensional programming matrix, shown here as three-dimensional. The sets $B^{k l}$ are shown in dark grey, and the cells in the matrix to which the search can be confined are outlined in black.

Metric Space

In the following, we assume

- $d(x, x)=0$ for all characters (including blank -)
- $d(x, y)=d(y, x)$ (symmetry)
- $d(x, y) \leq d(x, z)+d(z, y)$ holds (triangle inequality).

We discuss approximation algorithms for the
Sum-of-Pairs and for the distance-from-consensus.

2-Approximation algorithm for the Sum-of-pairs

(the Center Star Method)

1. Find $S_{t} \in \mathcal{S}$ minimizing $\sum_{i \neq t} D\left(S_{i}, S_{t}\right)$ and let $\mathcal{M}=\left\{S_{t}\right\}$.
Call S_{t} the the center of \mathcal{S}.
2. Add the sequences in $\mathcal{S}-\left\{S_{t}\right\}$ to \mathcal{M} one by one so that the alignment of every newly added sequence with S_{t} is optimal.

Running time:

1. $O\left(k^{2} n^{2}\right)$ for Step 1.
2. $\sum_{i=1}^{k-1} O((i \cdot n) \cdot n)=O\left(k^{2} \cdot n^{2}\right)$ for Step 2.

The produced answer is at most twice of the minimum solution.

Example

$\left\{S_{1}=\right.$ ATGCTC, $S_{2}=$ AGAGC, $S_{3}=$ TTCTG, $S_{4}=$ ATTGCATGC $\}$

$S_{1}=$ ATGCTC	$S_{1}=$ ATGCTC	$S_{1}=$ AT-GC-T-C
$S_{2}=$ A-GAGC	$S_{3}=$ TT-CTG	$S_{4}=$ ATTGCATGC
$D\left(S_{1}, S_{2}\right)=3$	$D\left(S_{1}, S_{3}\right)=3$	$D\left(S_{1}, S_{4}\right)=3$
$S_{2}=$ AGAGC	$S_{2}=$ A--G-A-GC	$S_{3}=-$ TT-C-TG-
$S_{3}=$ TTCTG	$S_{4}=$ ATTGCATGC	$S_{4}=$ ATTGCATGC
$D\left(S_{2}, S_{3}\right)=5$	$D\left(S_{2}, S_{4}\right)=4$	$D\left(S_{3}, S_{4}\right)=4$

Hence $D\left(S_{1}, S_{2}\right)+D\left(S_{1}, S_{3}\right)+D\left(S_{1}, S_{4}\right)=9$,
$D\left(S_{2}, S_{1}\right)+D\left(S_{2}, S_{3}\right)+D\left(S_{2}, S_{4}\right)=12$,
$D\left(S_{3}, S_{1}\right)+D\left(S_{3}, S_{2}\right)+D\left(S_{3}, S_{4}\right)=12$,
$D\left(S_{4}, S_{1}\right)+D\left(S_{4}, S_{2}\right)+D\left(S_{4}, S_{3}\right)=11 . \therefore$ The center is S_{1}.

The alignment of S_{1}, S_{2}, S_{3} is

$$
\begin{aligned}
& S_{1}=\mathrm{ATGCTC} \\
& S_{2}=\mathrm{A}-\mathrm{GAGC} \\
& S_{3}=\mathrm{TT}-\mathrm{CTG} .
\end{aligned}
$$

And after adding S_{4}, we have

$$
\begin{aligned}
& S_{1}=\mathrm{AT}-\mathrm{GC}-\mathrm{T}-\mathrm{C} \\
& S_{2}=\mathrm{A}--\mathrm{GA}-\mathrm{G}-\mathrm{C} \\
& S_{3}=\mathrm{TT}--\mathrm{C}-\mathrm{G}-\mathrm{G} \\
& S_{4}=\mathrm{ATTGCATGC}
\end{aligned}
$$

Performance Analysis

$$
\begin{aligned}
A p p & =\sum_{1 \leq i \neq j \leq k} d_{\mathcal{M}}\left(S_{i}, S_{j}\right) \\
O p t & =\sum_{1 \leq i \neq j \leq k} d_{\widehat{\mathcal{M}}}\left(S_{i}, S_{j}\right)
\end{aligned}
$$

WLOG, we assume S_{1} is the center.

$$
\begin{aligned}
A p p & =\sum_{1 \leq i \neq j \leq k} d_{\mathcal{M}}\left(S_{i}, S_{j}\right) \\
& \leq \sum_{1 \leq i \neq j \leq k}\left[D\left(S_{i}, S_{1}\right)+D\left(S_{1}, S_{j}\right)\right] \\
& =\sum_{1 \leq i \neq j \leq k} D\left(S_{1}, S_{i}\right)+\sum_{1 \leq i \neq j \leq k} D\left(S_{1}, S_{j}\right) \\
& =2(k-1) \sum_{1<i \leq k} D\left(S_{1}, S_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& O p t=\sum_{1 \leq i \neq j \leq k} d_{\widehat{\mathcal{M}}}\left(S_{i}, S_{j}\right) \\
& \geq \sum_{1 \leq i \neq j \leq k} D\left(S_{i}, S_{j}\right) \\
&=\sum_{1 \leq i \leq k} \sum_{1 \leq j \neq i \leq k} D\left(S_{i}, S_{j}\right) \\
& \geq k \sum_{1<j \leq k} D\left(S_{1}, S_{j}\right) \\
& \therefore \frac{A p p}{O p t} \leq \frac{2(k-1)}{k}<2 .
\end{aligned}
$$

Distance from consensus:

- Input: a set of sequences $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$
- Output: a center string C such that $\Sigma D\left(S_{i}, C\right)$ is minimum.
(C may not be in \mathcal{S}.)
Fact: The center $S_{t} \in \mathcal{S}$ minimizing $\sum_{i \neq t} D\left(S_{i} . S_{t}\right)$ is a 2-approximation.

Performance Analysis

WLOG, we assume S_{1} is the center.

$$
\begin{aligned}
& A p p=\sum_{1<i \leq k} D\left(S_{1}, S_{i}\right) \\
& O p t=\sum_{1 \leq i \leq k} D\left(C, S_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{1 \leq i \neq j \leq k} D\left(S_{i}, S_{j}\right) & \leq \sum_{1 \leq i \neq j \leq k}\left[D\left(S_{i}, C\right)+D\left(C, S_{j}\right)\right] \\
& =\sum_{1 \leq i \neq j \leq k} D\left(S_{i}, C\right)+\sum_{1 \leq i \neq j \leq k} D\left(C, S_{j}\right) \\
& =2 \sum_{1 \leq i \neq j \leq k} D\left(C, S_{i}\right) \\
& =2(k-1) \sum_{1 \leq i \leq k} D\left(C, S_{i}\right)=2(k-1) \cdot O p t .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{1 \leq i \neq j \leq k} D\left(S_{i}, S_{j}\right) & =\sum_{1 \leq i \leq k} \sum_{1 \leq j \neq i \leq k} D\left(S_{i}, S_{j}\right) \\
& \geq k \sum_{1<j \leq k} D\left(S_{1}, S_{j}\right)=k \cdot A p p \\
\therefore \frac{A p p}{O p t} & \leq \frac{2(k-1)}{k}<2
\end{aligned}
$$

A better solution can be produced by choosing the most common characters in each column.

Example:

\mathbf{A}	\mathbf{B}	-	\mathbf{C}	-	\mathbf{D}
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{C}	-	\mathbf{D}
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	-
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{C}	-	\mathbf{D}

Phylogenetic Tree

