Multiple Alignment

Guan-Shieng Huang

Mar. 18, 2003

What is a multiple alignment

- A C . . B C D B
- . C A D B . D .
- A C A . B C D .

An alignment of globins produced by CLUSTAL

						The second se
VHLT	PEEKSAVTALWGK	VN	YD	EVGGEALGRLLVV	YP	WTOR
VQLS	GEEKAAVLALWDK	VN	EE	EVGGEALGRLLVV	YP	WTOR
VLS	PADKTNVKAAWGK	VG	HA	AGEYGAEALERMFLS	FP	TTKT
VLS	AADKTNVKAAWSK	VG	GH	AGEYGAEALERMFLG	FP	TTKT
PIVDTGSVAPLS	AAEKTKIRSAWAP	٧Y	SD	YETSGVDILVKFFTS	TP	AAEE
VLS	EGEWQLVLHVWAK	VE	AD	VAGHGQDILIRLFKS	HP	ETLE
GALT	ESQAALVKSSWEE	FN	AN	IPKHTHRFFILVLEI	AP	AAKD

FFESFGDLSTPDAVMGN	PKVKAHGKKVLGAFSDG-	L	AHLDNL	KG	TFATLSELHCDKLHVD
FFDSFGDLSNPGAVMGN	PKVKAHGKKVLHSFGEG-	V	HHLDNL	KG	TFAALSELHCDKLHVD
YFPHF-DLSHGS	AQVKGHGKKVADALTNA-	V	AHVDDM	PN	ALSALSDLHAHKLRVD
YFPHF-DLSHGS	AQVKAHGKKVGDALTNA-	V	GHLDDL	PG	ALSNLSDLHAHKLRVD
FFPKFKGLTTADELKKS	ADVRWHAERIIDAVDDA-	V	ASMODT	EN	MSSMKDLSGKHAKSFEVD
KFDRFKHLKTEAEMKAS	EDLKKHGVTVLTALGAI-	L	KKKGHH	EA	ELKPLAQSHATKHKIP
LFSSFLKGGTSEVPQNN	PELQAHAGKVFKLVYEAA	IQL	EVTGVV	AS	DATLKNLGSVHVSKGVVA

PENFRLLGNVLVCVLAHH	FGKEFTPPVQA	AYQKVVAGVANALA	НКҮН
PENFRLLGNVLVVVLARH	FGKDFTPELQA	SYQKVVAGVANALA	нкүн
PVNFKLLSHCLLVTLAAH	LPAEFTPAVHA	SLDKFLASVSTVLT	SKYR
PVNFKLLSHCLLSTLAVH	LPNDFTPAVHA	SLDKFLSSVSTVLT	SKYR
PEYFKVLAAVIADTVAAG	DA	GFEKLLRMICILLR	SAY
IKYLEFISEAIIHVLHSR	HPGDFGADAQG	AMNKALELFRKDIA	AKYKELGYQG
DAHFPVVKEAILKTIKEV	VGAKWSEELNS	AWTIAYDELAIVIK	KEMDDA-
	1		

An alignment of ten I-set immunoglobin superfamily

structure:	aaaaabbbbbbbbbbbbbbbbbbbbbbbbbbb
ltlk	ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESBHEO
AXO1_RAT	RDPVKTHEGWGVMLPCNPPAHY - PGLSVRWLINEEPNET DTDCP UPV
AXO1_RAT	ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPLASONRVP
AXO1_RAT	RRLIPAARGGEISILCOPRAAPKATTIWSKGTEILONSTPUT
AXO1_RAT	DINVGDNLTLOCHASHDPTMDLTFTWTLDDFPTDFDKDCGHVPPAC
NCA2_HUMAN	PTPQEFREGEDAVIVCDVVSSLPPTTTWKHKGRDVILKKDVPRT
NCA2_HUMAN	PSQGEISVGESKFFLCOVAGDA-KDKDTSWFSPNGFK-LTPNOORTP
NCA2_HUMAN	IVNATANLGOSVTLVCDAEGF PEPTMSWTKDGEO IFOFFDDE- VVI
NRG_DROME	RRQSLALRGKRMELFCIYGGT PLPOTVWSKDGOR LOWSD PLT
NRG_DROME	PONYEVAAGOSATFRCNEAHDDTLEIEIDWWKDGOSIDFFAORPEV
consensus:	G+.+.C.++.W++.
et ructure.	Add
1+12	
AXO1 Pam	SOTT CNUVIA DENNA COLONIARYTCKAVNSLGEATCTAELLVET
AVOI DAM	JUL A COLDEN AND AND AND AND AND AND AND AND AND AN
AXO1 PAT	VLAGTIYASAELAVQA
AVO1 PAR	VISD
MCA2 HIMAN	W. CN NUL OT DO DU CONCERNING CONCERNING CONCERNING
NCA2_HUMAN	VLSNNILQIRGIRKTDEGTYRCEGRILARGEINFKDIQVIVNV
NCA2_HUMAN	VVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQ
NPC DROME	PSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFA
NPC DROME	VGHIGKSLVIRQTNFDDAGTYTCDVSNGVGNAQSFSIILNVNS
NRG_DROME	NTNDDEATARANLIVQD
consensus	······································

Motivation

- Protein databases are often categorized by protein families.
 How can we identify a newly sequenced protein?
- 2. Alu repeat is approximately 300 bps and appears over 600000 times in the human genome.
- 3. A multiple alignment may suggest
 - a common structure of the protein products
 - a common function
 - a common evolutionary source.

Issues

- How to define meaningful scoring function for an alignment?
 - 1. evolutionary correct alignment more difficult!
 - 2. structure alignment
- How to find the best alignment? By algorithms.

Three types of alignment problems

- 1. DNA
- 2. protein (joined by disulfide bond)
- 3. RNA more difficult due to long-range correlation

In this lecture, we focus on alignment problems of sequences of DNAs or proteins.

Formulation

- 1. Input: k sequences S_1, S_2, \ldots, S_k
- 2. Output: S'_1, S'_2, \ldots, S'_k of equal length such that S'_i is obtained from S_i by inserting spaces.
- 3. Goal: For each column of the alignment, we have a score. Our goal is to optimize the overall score. $\begin{cases} S'_1: A C \cdot B C D B \\ S'_2: C A D B \cdot D \\ S'_3: A C A \cdot B C D . \end{cases}$

Here we assume that individual columns are statistically independent, and hence the overall score is the sum of scores in individual columns.

Algorithm — for k = 3

- **1.** $S_1 = x_1 x_2 \dots x_{n_1}$ $S_2 = y_1 y_2 \dots y_{n_2}$ $S_3 = z_1 z_2 \dots z_{n_3}$
- 2. $D(i_1, i_2, i_3)$: the best score for aligning the prefixes of length i_1, i_2, i_3 of S_1, S_2, S_3 , respectively.
- 3. $\sigma(x_{i_1}, y_{i_2}, z_{i_3})$ the distance to align $x_{i_1}, y_{i_2}, z_{i_3}$ in one column.

4. We have

$$D(i_{1}, i_{2}, i_{3}) = \min \begin{cases} D(i_{1} - 1, i_{2} - 1, i_{3} - 1) + \sigma(x_{i_{1}}, y_{i_{2}}, z_{i_{3}}) \\ D(i_{1} - 1, i_{2} - 1, i_{3}) + \sigma(x_{i_{1}}, y_{i_{2}}, -) \\ D(i_{1} - 1, i_{2}, i_{3} - 1) + \sigma(x_{i_{1}}, -, z_{i_{3}}) \\ D(i_{1}, i_{2} - 1, i_{3} - 1) + \sigma(-, y_{i_{2}}, z_{i_{3}}) \\ D(i_{1} - 1, i_{2}, i_{3}) + \sigma(x_{i_{1}}, -, -) \\ D(i_{1}, i_{2} - 1, i_{3}) + \sigma(-, y_{i_{2}}, -) \\ D(i_{1}, i_{2}, i_{3} - 1) + \sigma(-, -, z_{i_{3}}) \end{cases}$$

and D(0, 0, 0) = 0.

Note that we minimize the total distance of the alignments.

Complexity

• time =
$$O(n_1n_2n_3 \cdot (2^3 - 1))$$

time = $O(2^k \cdot \prod_{j=1}^k n_j)$ for any k
Hence the DP algorithm for MSA is in fact a pseudo-polynomial algorithm.

• space =
$$O(n_1 n_2 n_3)$$

space = $O(\prod_{j=1}^k n_j)$ for any k.

 the problem is NP-complete even for the Sum-of-pairs
 (Wang & Lipper 1004)

(Wang & Jiang, 1994)

To prove that a computational problem is NP-hard, we need

• to reduce an NP-complete (hard) problem to this problem.

When a computational problem is NP-hard, we deal with it by

- heuristic: convince other people by experiments
- approximation: how to analyze the performance
- randomization: how to design a reasonable algorithm.

Famous NP-complete problems

1. Satisfiability: Test whether a logical formula given in conjunctive normal form is satisfiable.

 $(x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1) \land (x_1 \lor \neg x_2 \lor x_3) \cdots$

- 2. Traveling Salesman Problem: Find the shortest tour in a graph.
- 3. 3-coloring: Ask whether a graph can be colored by three colors.
- 4. Max-clique: Find a maximum clique in arbitrary graph.
- 5. Max-Cut
- 6. Knapsack problem

Notations

- D(X,Y): the pariwise distance from X to Y
- $d_{\mathcal{M}}(X,Y)$: the distance from X to Y in some alignment \mathcal{M}

We usually write $d_{\mathcal{M}}(X, Y)$ as d(X, Y) when the alignment \mathcal{M} is implicitly assumed. Note that $D(X, Y) \leq d(X, Y)$ always holds.

Suppose we have an alignment :										
	$S_1':$	a	С	a	С	a	С	a	С	
	S_2' :	a	\mathbf{b}	a	\mathbf{b}	a	\mathbf{b}	a	\mathbf{b}	
	S_3' :	C	\mathbf{b}	C	b	C	b	С	\mathbf{b}	
-		2	2	2	2	2	2	2	2	distance $= 16$
However, the pairwise distance between S_1 and S_2 is										
S_1 :	a	С	a	С	a	С	a	С		
$S_2:$	a	\mathbf{b}	a	b	a	b	a	\mathbf{b}		
	0	1	0	1	0	1	0	1	dis	tance = 4

For S_1 , S_3 , it is S_1 : a c a c a c a c - S_3 : - c b c b c b c b $0 \ 1 \ 0 \ 1 \ 0 \ 1$ distance = 51 0 1 And for S_2 , S_3 , it is S_2 : **a b a b a b a b a b** S_3 : c b c b c b c b $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ distance = 4$ 1 0 We can see that $D(S_1, S_2) + D(S_1, S_3) + D(S_2, S_3) =$ $4+5+4=13 < 16 = d(S'_1, S'_2, S'_3).$

Multiple alignment problems

- 1. Distance from consensus: Find a center string C such that $\Sigma D(S_i, C)$ is minimum.
- 2. Sum-of-pairs: Minimize $\sum_{i < j} d_{\mathcal{M}}(S_i, S_j)$ for all possible alignment \mathcal{M} .

 $(\sigma(x_{i_1}, x_{i_2}, x_{i_3}) = d(x_{i_1}, x_{i_2}) + d(x_{i_1}, x_{i_3}) + d(x_{i_2}, x_{i_3}))$

3. Evolutionary tree alignment:
Optimize the cost of an evolutionary tree.
(E.g. minimum spanning tree)

Sum-of-pairs problem

- Input: a set of sequences $S = \{S_1, S_2, \dots, S_k\}$
- Output: compute a global multiple alignment \mathcal{M} with minimum sum-of-pairs score

for k = 3. $d(S'_1, S'_2) + d(S'_1, S'_3) + d(S'_2, S'_3)) = 5 + 2 + 3 = 10$. (equal=0, not equal=1) Branch & bound heuristic for the DP algorithm of the Sum-of-pairs:

- Carrillo & Lipman (1988)
- The idea was implemented in the famous problem MSA Lipman, Altshul, Kececiogly, 1989
- MSA can align 6 sequences of length ~ 200 in reasonable time.

Let \mathcal{M} be any multiple alignment of \mathcal{S} . Let $\widehat{\mathcal{M}}$ be an optimal multiple alignment of \mathcal{S} . (Hence, $\sum_{i < j} d_{\widehat{\mathcal{M}}}(S_i, S_j) \leq \sum_{i < j} d_{\mathcal{M}}(S_i, S_j)$.) And also, $D(S_i, S_j) \leq d_{\mathcal{M}}(S_i, S_j)$ for all \mathcal{M} . Suppose an upper bound $\sigma(\mathcal{S})$ of the best alignment is given. For any s, t, we have

$$\sigma(\mathcal{S}) \geq \Sigma_{i < j} d_{\widehat{\mathcal{M}}}(S_i, S_j)$$

$$\geq \Sigma_{i < j} D(S_i, S_j) - D(S_s, S_t) + d_{\widehat{\mathcal{M}}}(S_s, S_t).$$

 $D(S_i, S_j)$ can be evaluated by the optimal pairwise alignment algorithm. Thus, $d_{\widehat{\mathcal{M}}}(S_s, S_t)$ has an upper bound on the s, t-plane.

Figure 6.3 Carrillo & Lipman's algorithm allows the search for optimal alignments to be restricted to a subset of the multidimensional programming matrix, shown here as three-dimensional. The sets B^{kl} are shown in dark grey, and the cells in the matrix to which the search can be confined are outlined in black.

Metric Space

In the following, we assume

- d(x,x) = 0 for all characters (including blank -)
- d(x,y) = d(y,x) (symmetry)
- $d(x,y) \le d(x,z) + d(z,y)$ holds (triangle inequality).

We discuss approximation algorithms for the Sum-of-Pairs and for the distance-from-consensus.

2-Approximation algorithm for the Sum-of-pairs

(the Center Star Method)

- 1. Find $S_t \in S$ minimizing $\sum_{i \neq t} D(S_i, S_t)$ and let $\mathcal{M} = \{S_t\}$. Call S_t the the center of S.
- 2. Add the sequences in $S \{S_t\}$ to M one by one so that the alignment of every newly added sequence with S_t is optimal.

Running time:

1. $O(k^2n^2)$ for Step 1.

2.
$$\sum_{i=1}^{k-1} O((i \cdot n) \cdot n) = O(k^2 \cdot n^2)$$
 for Step 2.

The produced answer is at most twice of the minimum solution.

Example

$D(S_2, S_1) + D(S_2, S_3) + D(S_2, S_4) = 12,$							
$D(S_3, S_1) + D(S_3, S_2) + D(S_3, S_4) = 12,$							
$D(S_4, S_1) + D(S_4, S_2) + D(S_4, S_3) = 11$. : The center is S_1 .							

The alignment of S_1, S_2, S_3 is

 $S_1 = \text{ATGCTC}$ $S_2 = \text{A-GAGC}$ $S_3 = \text{TT-CTG}$.

And after adding S_4 , we have

$$S_1 = AT-GC-T-C$$

 $S_2 = A--GA-G-C$
 $S_3 = TT--C-T-G$
 $S_4 = ATTGCATGC$.

Performance Analysis

 $App = \sum_{1 \le i \ne j \le k} d_{\mathcal{M}}(S_i, S_j)$ $Opt = \sum_{1 \le i \ne j \le k} d_{\widehat{\mathcal{M}}}(S_i, S_j)$ WLOG, we assume S_1 is the center.

$$App = \sum_{1 \le i \ne j \le k} d_{\mathcal{M}}(S_i, S_j)$$

$$\leq \sum_{1 \le i \ne j \le k} [D(S_i, S_1) + D(S_1, S_j)]$$

$$= \sum_{1 \le i \ne j \le k} D(S_1, S_i) + \sum_{1 \le i \ne j \le k} D(S_1, S_j)$$

$$= 2(k-1) \sum_{1 < i \le k} D(S_1, S_i)$$

$$Opt = \sum_{1 \le i \ne j \le k} d_{\widehat{\mathcal{M}}}(S_i, S_j)$$

$$\geq \sum_{1 \le i \ne j \le k} D(S_i, S_j)$$

$$= \sum_{1 \le i \le k} \sum_{1 \le j \ne i \le k} D(S_i, S_j)$$

$$\geq k \sum_{1 < j \le k} D(S_1, S_j)$$

$$\therefore \frac{App}{Opt} \leq \frac{2(k-1)}{k} < 2.$$

Distance from consensus:

- Input: a set of sequences $S = \{S_1, S_2, \dots, S_k\}$
- Output: a center string C such that $\Sigma D(S_i, C)$ is minimum.

(C may not be in S.)

Fact: The center $S_t \in S$ minimizing $\sum_{i \neq t} D(S_i.S_t)$ is a 2-approximation.

Performance Analysis

WLOG, we assume S_1 is the center.

$$App = \sum_{1 \le i \le k} D(S_1, S_i)$$
$$Opt = \sum_{1 \le i \le k} D(C, S_i)$$

$$\sum_{1 \le i \ne j \le k} D(S_i, S_j) \le \sum_{1 \le i \ne j \le k} \left[D(S_i, C) + D(C, S_j) \right]$$
$$= \sum_{1 \le i \ne j \le k} D(S_i, C) + \sum_{1 \le i \ne j \le k} D(C, S_j)$$
$$= 2 \sum_{1 \le i \ne j \le k} D(C, S_i)$$
$$= 2(k-1) \sum_{1 \le i \le k} D(C, S_i) = 2(k-1) \cdot Opt.$$

$$\sum_{1 \le i \ne j \le k} D(S_i, S_j) = \sum_{1 \le i \le k} \sum_{1 \le j \ne i \le k} D(S_i, S_j)$$
$$\geq k \sum_{1 < j \le k} D(S_1, S_j) = k \cdot App$$

$$\therefore \frac{App}{Opt} \le \frac{2(k-1)}{k} < 2.$$

A better solution can be produced by choosing the most common characters in each column.

Example:

- A B C D
- A B C C D
- A B C D E -
- A B C C D

