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What is a multiple alignment

A C . . B C D B

. C A D B . D .

A C A . B C D .
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An alignment of globins produced by CLUSTAL
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An alignment of ten I-set immunoglobin superfamily
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Motivation

1. Protein databases are often categorized by

protein families.

How can we identify a newly sequenced protein?

2. Alu repeat is approximately 300 bps and appears

over 600000 times in the human genome.

3. A multiple alignment may suggest

• a common structure of the protein products

• a common function

• a common evolutionary source.
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Issues

• How to define meaningful scoring function for an

alignment?

1. evolutionary correct alignment — more

difficult!

2. structure alignment

• How to find the best alignment? By algorithms.
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Three types of alignment problems

1. DNA

2. protein (joined by disulfide bond)

3. RNA — more difficult due to long-range

correlation

In this lecture, we focus on alignment problems of

sequences of DNAs or proteins.
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Formulation

1. Input: k sequences S1, S2, . . . , Sk

2. Output: S′
1
, S′

2
, . . . , S′

k of equal length such that S ′
i

is obtained from Si by inserting spaces.

3. Goal: For each column of the alignment, we have

a score. Our goal is to optimize the overall score.

Example:





S′
1
: A C . . B C D B

S′
2
: . C A D B . D .

S′
3
: A C A . B C D .

Here we assume that individual columns are

statistically independent, and hence the overall score

is the sum of scores in individual columns.
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Algorithm — for k = 3

1. S1 = x1x2 . . . xn1

S2 = y1y2 . . . yn2

S3 = z1z2 . . . zn3

2. D(i1, i2, i3): the best score for aligning the prefixes

of length i1, i2, i3 of S1, S2, S3, respectively.

3. σ(xi1 , yi2 , zi3) the distance to align xi1 , yi2 , zi3 in one

column.

8



4. We have

D(i1, i2, i3) = min





D(i1 − 1, i2 − 1, i3 − 1) + σ(xi1
, yi2

, zi3
)

D(i1 − 1, i2 − 1, i3) + σ(xi1
, yi2

,−)

D(i1 − 1, i2, i3 − 1) + σ(xi1
,−, zi3

)

D(i1, i2 − 1, i3 − 1) + σ(−, yi2
, zi3

)

D(i1 − 1, i2, i3) + σ(xi1
,−,−)

D(i1, i2 − 1, i3) + σ(−, yi2
,−)

D(i1, i2, i3 − 1) + σ(−,−, zi3
)

and D(0, 0, 0) = 0.

Note that we minimize the total distance of the

alignments.
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Complexity

• time = O(n1n2n3 · (2
3 − 1))

time = O(2k ·
∏k

j=1
nj) for any k

Hence the DP algorithm for MSA is in fact a

pseudo-polynomial algorithm.

• space = O(n1n2n3)

space = O(
∏k

j=1
nj) for any k.

• the problem is NP-complete even for the

Sum-of-pairs

(Wang & Jiang, 1994)
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To prove that a computational problem is NP-hard,

we need

• to reduce an NP-complete (hard) problem to this

problem.

When a computational problem is NP-hard, we deal

with it by

• heuristic: convince other people by experiments

• approximation: how to analyze the performance

• randomization: how to design a reasonable

algorithm.
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Famous NP-complete problems

1. Satisfiability: Test whether a logical formula

given in conjunctive normal form is satisfiable.

(x1 ∨ x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1) ∧ (x1 ∨ ¬x2 ∨ x3) · · ·

2. Traveling Salesman Problem: Find the shortest

tour in a graph.

3. 3-coloring: Ask whether a graph can be colored

by three colors.

4. Max-clique: Find a maximum clique in arbitrary

graph.

5. Max-Cut

6. Knapsack problem
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Notations

D(X,Y ): the pariwise distance from X to Y

dM(X,Y ): the distance from X to Y in some

alignment M

We usually write dM(X,Y ) as d(X,Y ) when the

alignment M is implicitly assumed.

Note that D(X,Y ) ≤ d(X,Y ) always holds.
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Suppose we have an alignment :

S′
1

: a c a c a c a c

S′
2

: a b a b a b a b

S′
3

: c b c b c b c b

2 2 2 2 2 2 2 2 distance = 16

However, the pairwise distance between S1 and S2 is

S1 : a c a c a c a c

S2 : a b a b a b a b

0 1 0 1 0 1 0 1 distance = 4
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For S1, S3, it is

S1 : a c a c a c a c -

S3 : - c b c b c b c b

1 0 1 0 1 0 1 0 1 distance = 5

And for S2, S3, it is

S2 : a b a b a b a b

S3 : c b c b c b c b

1 0 1 0 1 0 1 0 distance = 4

We can see that D(S1, S2) + D(S1, S3) + D(S2, S3) =

4 + 5 + 4 = 13 < 16 = d(S ′
1
, S′

2
, S′

3
).
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Multiple alignment problems

1. Distance from consensus:

Find a center string C such that ΣD(Si, C) is

minimum.

2. Sum-of-pairs:

Minimize Σi<jdM(Si, Sj) for all possible alignment

M.

(σ(xi1 , xi2 , xi3) = d(xi1 , xi2) + d(xi1 , xi3) + d(xi2 , xi3))

3. Evolutionary tree alignment:

Optimize the cost of an evolutionary tree.

(E.g. minimum spanning tree)
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Sum-of-pairs problem

• Input: a set of sequences S = {S1, S2, . . . , Sk}

• Output: compute a global multiple alignment M

with minimum sum-of-pairs score

Example: M =





S′
1
: A C . . B C D B

S′
2
: . C A D B . D .

S′
3
: A C A . B C D .

for k = 3.

d(S′
1
, S′

2
) + d(S′

1
, S′

3
) + d(S′

2
, S′

3
)) = 5 + 2 + 3 = 10.

(equal=0, not equal=1)
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Branch & bound heuristic for the DP algorithm of

the Sum-of-pairs:

• Carrillo & Lipman (1988)

• The idea was implemented in the famous

problem MSA

Lipman, Altshul, Kececiogly, 1989

• MSA can align 6 sequences of length ∼ 200 in

reasonable time.
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Let M be any multiple alignment of S.

Let M̂ be an optimal multiple alignment of S.

(Hence, Σi<jdM̂(Si, Sj) ≤ Σi<jdM(Si, Sj).)

And also, D(Si, Sj) ≤ dM(Si, Sj) for all M.

Suppose an upper bound σ(S) of the best alignment

is given. For any s, t, we have

σ(S) ≥ Σi<jdM̂(Si, Sj)

≥ Σi<jD(Si, Sj) − D(Ss, St) + d
M̂

(Ss, St).

D(Si, Sj) can be evaluated by the optimal pairwise

alignment algorithm. Thus, d
M̂

(Ss, St) has an upper

bound on the s, t-plane.
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Metric Space

In the following, we assume

• d(x, x) = 0 for all characters (including blank −)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) ≤ d(x, z) + d(z, y) holds (triangle inequality).

We discuss approximation algorithms for the

Sum-of-Pairs and for the distance-from-consensus.
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2-Approximation algorithm for the
Sum-of-pairs

(the Center Star Method)

1. Find St ∈ S minimizing
∑

i6=t D(Si, St) and let

M = {St}.

Call St the the center of S.

2. Add the sequences in S − {St} to M one by one so

that the alignment of every newly added

sequence with St is optimal.
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Running time:

1. O(k2n2) for Step 1.

2.
∑k−1

i=1
O((i · n) · n) = O(k2 · n2) for Step 2.

The produced answer is at most twice of the

minimum solution.

23



24



Example

{S1 = ATGCTC, S2 = AGAGC, S3 = TTCTG, S4 = ATTGCATGC}

S1=ATGCTC S1=ATGCTC S1=AT-GC-T-C

S2=A-GAGC S3=TT-CTG S4=ATTGCATGC

D(S1, S2) = 3 D(S1, S3) = 3 D(S1, S4) = 3

S2=AGAGC S2=A--G-A-GC S3=-TT-C-TG-

S3=TTCTG S4=ATTGCATGC S4=ATTGCATGC

D(S2, S3) = 5 D(S2, S4) = 4 D(S3, S4) = 4

Hence D(S1, S2) + D(S1, S3) + D(S1, S4) = 9,

D(S2, S1) + D(S2, S3) + D(S2, S4) = 12,

D(S3, S1) + D(S3, S2) + D(S3, S4) = 12,

D(S4, S1)+D(S4, S2)+D(S4, S3) = 11. ∴ The center is S1.
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The alignment of S1, S2, S3 is

S1= ATGCTC

S2= A-GAGC

S3= TT-CTG.

And after adding S4, we have

S1= AT-GC-T-C

S2= A--GA-G-C

S3= TT--C-T-G

S4= ATTGCATGC.
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Performance Analysis

App =
∑

1≤i6=j≤k dM(Si, Sj)

Opt =
∑

1≤i6=j≤k d
M̂

(Si, Sj)

WLOG, we assume S1 is the center.

App =
∑

1≤i6=j≤k

dM(Si, Sj)

≤
∑

1≤i6=j≤k

[D(Si, S1) + D(S1, Sj)]

=
∑

1≤i6=j≤k

D(S1, Si) +
∑

1≤i6=j≤k

D(S1, Sj)

= 2(k − 1)
∑

1<i≤k

D(S1, Si)
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Opt =
∑

1≤i6=j≤k

d
M̂

(Si, Sj)

≥
∑

1≤i6=j≤k

D(Si, Sj)

=
∑

1≤i≤k

∑

1≤j 6=i≤k

D(Si, Sj)

≥ k
∑

1<j≤k

D(S1, Sj)

∴

App

Opt
≤

2(k − 1)

k
< 2.
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Distance from consensus:

• Input: a set of sequences S = {S1, S2, . . . , Sk}

• Output: a center string C such that ΣD(Si, C) is

minimum.

(C may not be in S.)

Fact: The center St ∈ S minimizing
∑

i6=t D(Si.St) is a

2-approximation.
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Performance Analysis

WLOG, we assume S1 is the center.

App =
∑

1<i≤k D(S1, Si)

Opt =
∑

1≤i≤k D(C,Si)

∑

1≤i6=j≤k

D(Si, Sj) ≤
∑

1≤i6=j≤k

[D(Si, C) + D(C,Sj)]

=
∑

1≤i6=j≤k

D(Si, C) +
∑

1≤i6=j≤k

D(C,Sj)

= 2
∑

1≤i6=j≤k

D(C,Si)

= 2(k − 1)
∑

1≤i≤k

D(C,Si) = 2(k − 1) · Opt.
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∑

1≤i6=j≤k

D(Si, Sj) =
∑

1≤i≤k

∑

1≤j 6=i≤k

D(Si, Sj)

≥ k
∑

1<j≤k

D(S1, Sj) = k · App.

∴
App

Opt
≤

2(k − 1)

k
< 2.
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A better solution can be produced by choosing the

most common characters in each column.

Example:

A B - C - D

A B C C - D

A B C D E -

A B C C - D

.
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Phylogenetic Tree

33


