Reduction and NP-completeness

Guan-Shieng Huang

Oct. 25, 2006

Reduction

To reduce Problem A to Problem B, we mean if B is solved, then A is solved.

x: an instance of Problem A

 \mathcal{R} : transformation from A to B

 $\mathcal{R}(x)$: an instance of B

We require $\mathcal{R}(x) \in B$ iff $x \in A$.

Hence B is solved implies that A is solved.

Or, B is at least as hard as A.

For computational problems, we say language L_1 is reducible to L_2 if there is a log-space reduction \mathcal{R} such that

$$x \in L_1$$
 if and only if $\mathcal{R}(x) \in L_2$

for any string x as the input of decision problem for L_1 .

If \mathcal{R} is a log-space reduction, then \mathcal{R} is a polynomial-time reduction.

- 1. There are at most $O(nc^{k \lg n})$ possible configurations where c and k are constants..
- 2. If a computation for a Turing machine is terminated, each configuration can appear at most once.
- 3. Hence, \mathcal{R} uses at most polynomial steps.

Reducing Hamilton Path (HP) to SAT

(Example 8.1)

HP: Given a graph, whether there is a path that visits each node exactly once.

G has an HP iff $\mathcal{R}(G)$ is satisfiable.

 $x_{i,j}$: node j is the ith node in the HP.

$$\mathcal{R}(G) = \begin{cases} (x_{1,j} \lor x_{2,j} \lor \cdots \lor x_{n,j}) & \text{for } 1 \le j \le n \\ (\neg x_{i,j} \lor \neg x_{k,j}) & \text{for } 1 \le i, j \ne k \le n \\ (x_{i,1} \lor x_{i,2} \lor \cdots \lor x_{i,n}) & \text{for } 1 \le i \le n \\ (\neg x_{k,i} \lor \neg x_{k+1,j}) & \text{for each pair } (i,j) \text{ not in } G. \end{cases}$$

If \mathcal{R} is a reduction from L_1 to L_2 and \mathcal{R}' is a reduction from L_2 to L_3 , then there is a reduction from L_1 to L_3 .

Given any x (either $x \notin L_1$ or $x \in L_1$), we have

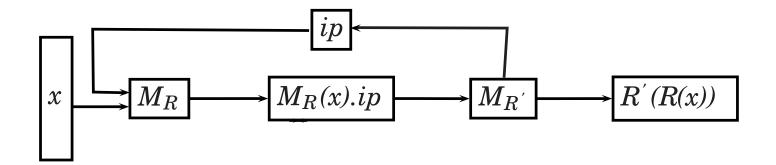
$$x \in L_1 \text{ iff } \mathcal{R}(x) \in L_2 \text{ iff } \mathcal{R}'(\mathcal{R}(x)) \in L_3.$$

Thus, we have a reduction s.t. $x \in L_1$ iff $\mathcal{R}'(\mathcal{R}(x)) \in L_3$.

However, we cannot implement the composition $\mathcal{R}' \circ \mathcal{R}$ as

- 1. Compute $\mathcal{R}(x)$;
- 2. Compute $\mathcal{R}'(\mathcal{R}(x))$.

This is because we may need polynomial spaces in order to store $\mathcal{R}(x)$ in Step 1.



Complete Problems

(Definition 8.2)

C: complexity class

L: a language in C

We say L is C-complete if any language $L' \in C$ can be reduced to L.

Examples:

NP-complete, P-complete, PSPACE-complete, NL-complete

Definition A class C' is closed under reductions if whenever L is reducible to L' and $L' \in C'$, then also $L \in C'$.

Remark

- 1. A complete problem is the least likely among all problems in \mathcal{C} to belong in a weaker class $\mathcal{C}' \subseteq \mathcal{C}$.
- 2. If it does, then the whole class C coincides with the weaker class C', as long as C' is closed under reduction.

P, NP, coNP, L, NL, PSPACE, and EXP are all closed under log-space reductions.

Remark:

If an NP-complete problem is in P, then P=NP.

If two classes \mathcal{C} and \mathcal{C}' are both closed under reductions, and there is a language L which is complete for both \mathcal{C} and \mathcal{C}' , then $\mathcal{C} = \mathcal{C}'$.

Observe that $\mathcal{C} \subseteq \mathcal{C}'$ and $\mathcal{C}' \subseteq \mathcal{C}$, and thus $\mathcal{C} = \mathcal{C}'$.

Cook's Theorem (Theorem 8.2) SAT is NP-complete.

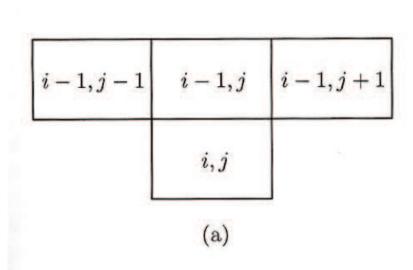
Table Method

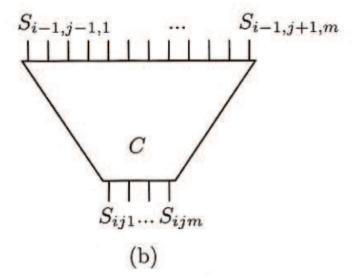
Figure 8.3. Computation table.

Theorem 8.1

CIRCUIT VALUE is P-complete.

 $p(|x|) \times p(|x|)$ size computation table where p is the time bound for the algorithm.







Cook's Theorem

SAT is NP-complete.

To standardize the behavior of non-determinism:

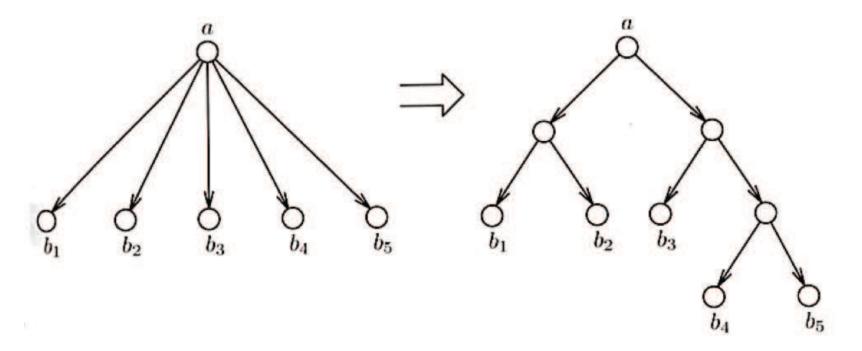


Figure 8-5. Reducing the degree of nondeterminism.

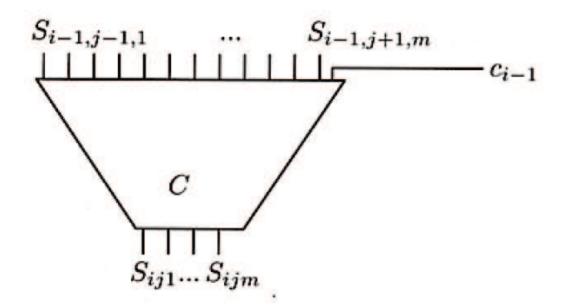


Figure 8-6. The construction for Cook's theorem.