Randomized Computation (II)

Guan-Shieng Huang

Dec. 13, 2006

Randomized Complexity Classes

- RP: Randomized Polynomial time
- ZPP: Zero-error Probabilistic Polynomial time
- BPP: Bounded Probabilistic Polynomial time

RP

(Randomized Polynomial time)

Modelled as a non-deterministic Turing machine with

1. each computation on an input of length n terminates at $p(n)$ steps;
2. if $x \in L$, then at least half of the computations halts with "yes";
3. if $x \notin L$, then all computations halts with "no".

Remark Condition 2 can be relaxed to $\Omega\left(\frac{1}{p(n)}\right)$.
Suppose the probability of false negative is at most $1-\eta$.

- Repeating the RP algorithm k times can reduce the probability $\leq(1-\eta)^{k}$.
- Let $k=\left\lceil\log _{(1-\eta)} \frac{1}{2}\right\rceil=\left\lceil-\frac{1}{\lg (1-\eta)}\right\rceil$, which makes $(1-\eta)^{k} \leq \frac{1}{2}$.
- $\lg (1-\eta) \approx-\frac{\eta}{\ln 2}$,
$\therefore k \approx-\frac{1}{\lg (1-\eta)} \approx \frac{\ln 2}{\eta}=O(p(n))$ when $\eta=\Omega\left(\frac{1}{p(n)}\right)$.

ZPP

(Zero-error Probabilistic Polynomial time $=\mathrm{RP} \cap c o R P$)
It meas that there are two RP algorithms, one for $x \in L$ and the other for $x \in \bar{L}$.

BPP

(Bounded Probabilistic Polynomial time)

$$
\begin{cases}\operatorname{Prob}[R(x)=" y e s "] \geq \frac{3}{4} & \text { if } x \in L \\ \operatorname{Prob}[R(x)=" \text { no" }] \geq \frac{3}{4} & \text { if } x \notin L\end{cases}
$$

Remark The condition can be relaxed to

$$
\begin{cases}\operatorname{Prob}[R(x)=" y \mathrm{ys} "] \geq \frac{1}{2}+\epsilon & \text { if } x \in L \\ \operatorname{Prob}[R(x)=" \text { no" }] \geq \frac{1}{2}+\epsilon & \text { if } x \notin L\end{cases}
$$

where $\epsilon=\Omega\left(\frac{1}{p(n)}\right)$.

The Chernoff Bound

(Estimate the tail probability of independent Bernoulli trials.)

- x_{1}, \ldots, x_{n} : independent random variables taking values 1 and 0 with prob. p and $1-p$, respectively.
- $X=\sum_{i=1}^{n} x_{i}$
- $0 \leq \theta \leq 1$
then $\operatorname{Prob}[X \geq(1+\theta) p n] \leq \exp \left(-\frac{\theta^{2}}{3} p n\right)$.

Corollary Let $p=\frac{1}{2}+\epsilon$ for some $\epsilon>0$.
Then $\operatorname{Prob}\left[\sum_{i=1}^{n} x_{i} \leq \frac{n}{2}\right] \leq \exp \left(-\frac{\epsilon^{2} n}{6}\right)$.

Random Sources

Do we have true random sources?

- Pseudo randomness
- Perfect random source
- Slightly random source

Derandomization

Make a randomized algorithm deterministic without losing much efficiency.

