Complexity Classes

Guan-Shieng Huang

Oct. 18, 2006

Parameters for a Complexity Class

- model of computation: multi-string Turing machine
- modes of computation
 - 1. deterministic mode
 - 2. nondeterministic mode
- a resource we wish to bound
 - 1. time
 - 2. space
- a bound f mapping from \mathbb{N} to \mathbb{N} .

Definition 7.1: Proper Function

 $f: \mathbb{N} \to \mathbb{N}$ is proper if

- 1. f is non-decreasing (i.e., $f(n+1) \ge f(n)$);
- 2. there is a k-string TM M_f with I/O such that for any input x of length n, M_f computes $\sqcup^{f(n)}$ in time O(n + f(n)).

Definition: Complexity Classes

- 1. TIME(f): deterministic time SPACE(f): deterministic space NTIME(f): nondeterministic time NSPACE(f): nondeterministic space where f is always a proper function.
- 2. $\mathsf{TIME}(n^k) = \bigcup_{j>0} \mathsf{TIME}(n^j) \ (= \mathcal{P})$ $\mathsf{NTIME}(n^k) = \bigcup_{j>0} \mathsf{NTIME}(n^j) \ (= \mathcal{NP})$
- 3. $PSPACE = SPACE(n^k)$ $NPSPACE = NSPACE(n^k)$ $EXP = TIME(2^{n^k})$ $\mathcal{L} = SPACE(\lg n)$ $\mathcal{NL} = NSPACE(\lg n)$

Complement of a Decision Problem

Definition

- 1. Let $L \subseteq \Sigma^*$ be a language. The complement of L is $\bar{L} = \Sigma^* L$.
- 2. However, we often consider languages with certain format, i.e. the set of all graphs with degree ≤ 4 . In this case, we remove instances whose formats are not legal.
- 3. The complement of a decision problem A, usually called A-complement, is the decision problem whose answer is "yes" if the input is not in A, "no" if the input is in A.

Complement of Complexity Classes

Definition

For any complexity class C, let coC be the class $\{L | \bar{L} \in C\}$.

Corollary C = coC if C is a deterministic time or space complexity class.

That is, all deterministic time and space complexity classes are closed under complement since we can simply exchange its "yes"/"no" answer.

Complement of Nondeterministic Classes

non-deterministic computation:

accepts a string if one successful computation exists; rejects a string if all computations fail.

Example

1. SAT-complement (or coSAT): Given a Boolean expression ϕ in conjunctive normal form, is it unsatisfiable?

However, we can not simply exchange the "yes"/"no" answer of a non-deterministic Turing machine for this purpose.

Remark

It is an important open problem whether nondeterministic time complexity classes are closed under complement.

Halting Problem with Time Bounds

Definition

 $H_f = \{M; x | M \text{ accepts input x after at most } f(|x|) \text{ steps} \}$ where $f(n) \ge n$ is a proper complexity function.

Lemma 7.1 $H_f \in TIME(f(n)^3)$ where n = |M; x|. $(H_f \in TIME(f(n) \cdot \lg^2 f(n)))$

Lemma 7.2

 $H_f \not\in TIME(f(\lfloor \frac{n}{2} \rfloor)).$

Proof: By contradiction. Suppose M_{H_f} decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$. Define $D_f(M)$ as

if
$$M_{H_f}(M; M) = \text{"yes"}$$
 then "no", else "yes".

What is $D_f(D_f)$?

If
$$D_f(D_f) = \text{"yes"}$$
, then $M_{H_f}(M_{D_f}; M_{D_f}) = \text{"no"}$, "no" "yes".

Contradiction!

The Time Hierarchy Theorem

Theorem 7.1

If $f(n) \ge n$ is a proper complexity function, then the class $\mathtt{TIME}(f(n))$ is strictly contained within $\mathtt{TIME}(f(2n+1)^3)$.

Remark

A stronger version suggests that

$$TIME(f(n)) \subsetneq TIME(f(n) \lg^2 f(n)).$$

Corollary \mathcal{P} is a proper subset of EXP.

- 1. \mathcal{P} is a subset of TIME (2^n) .
- 2. $\mathsf{TIME}(2^n) \subsetneq \mathsf{TIME}((2^{2n+1})^3)$ (Time Hierarchy Theorem) $\mathsf{TIME}((2^{2n+1})^3) \subseteq \mathsf{TIME}(2^{n^2}) \subseteq \mathsf{EXP}.$

The Space Hierarchy Theorem

If f(n) is a proper function, then SPACE(f(n)) is a proper subset of $SPACE(f(n) \lg f(n))$.

(Note that the restriction $f(n) \ge n$ is removed from the Time Hierarchy Theorem.)

The Reachability Method

Theorem 7.4 Suppose that f(n) is a proper complexity function.

- 1. SPACE $(f(n)) \subseteq NSPACE(f(n))$, TIME $(f(n)) \subseteq NTIME(f(n))$. (: DTM is a special NTM.)
- 2. $NTIME(f(n)) \subseteq SPACE(f(n))$.
- 3. $NSPACE(f(n)) \subseteq TIME(k^{\lg n + f(n)})$ for k > 1.

Corollary

$$\mathcal{L} \subseteq \mathcal{NL} \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE.$$

However, $\mathcal{L} \subsetneq PSPACE$. Hence at least one of the four inclusions is proper. (Space Hierarchy Theorem)

Theorem 7.5: (Savitch's Theorem)

REACHABILITY \in SPACE($\lg^2 n$).

Corollary

- 1. $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$ for any proper complexity function $f(n) \ge \lg n$.
- 2. PSPACE = NPSPACE

Immerman-Szelepscényi Theorem

Theorem 7.6 If $f \ge \lg n$ is a proper complexity function, then NSPACE(f(n)) = coNSPACE(f(n)).

Corollary $\mathcal{NL} = co\mathcal{NL}$.