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/ Decision v.s. Optimization Problems \

decision problems: expect a “yes” /“no” answer

optimization problems: expect an optimal solution from all

feasible solutions
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When an optimization problem is proved to be NP-complete, the

next step is

e to find useful heuristics
e to develop approximation algorithms
e to use randomness

e to invest on average-case analyses
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Definition (optimization problem)
1. For each instance x there is a set of feasible solutions F'(x).

2. For each y € F(x), there is a positive integer m(x,y), which
measures the the cost (or benefit) of y.

3. OPT(xz) = m*(x) = minyc p(5) m(z,y)(minimization problem)

OPT(z) = m*(r) = maxyc p(z) m(x,y)(maximization problem)

Definition (NPO)
NPO is the class of all optimization problems whose decision
counterparts are in NP.

1. y € F(z) = |y| < |z|* for some k;

2. whether y € F(x) can be determined in polynomial time;

\3. m(x,y) can be evaluated in poly. time. /
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Definition (Relative approximation)
x: an instance of an optimization problem P

y: any feasible solution of x

max{m*(x), m(x,y)}

Remarks
1. 0 < E(x,y) <1;
2. E(x,y) = 0 when the solution is optimalj;

3. E(x,y) — 1 when the solution is very poor.
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Definition (Performance ratio)
x: an instance of an optimization problem P

y: any feasible solution of x

R(z,y) = max ('m(w»y) m* () )

m*(z) " m(z,y)

Remarks
1. R(xz,y) > 1;
2. R(z,y) = 1 means that y is optimal;
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Definition (r-approximation)
A(x): approximate solution of x for algorithm A

We say A is an r-approximation if

VeR(z, A(x)) <.

Remark
An r-approximation is also an r’-approximation if r < r’.
That is, the approximation becomes more difficult as r becomes

smaller.

Definition (APX)
APX is the class of all NPO problems that have r-approximation

algorithm for some constant r.
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Definition (Polynomial-time approximation scheme)
P: NPO problem
We say A is a PTAS for P if

1. A has two parameters r and x where x’s are instances of P:;

2. when r is fixed to a constant with » > 1, A(r, z) returns an

r-approximate solution of x in polynomial time in |z|.

Remark
The time complexity of A could be

1

O™ (712, 0(n (r = 1)), 0(n°277)

where n = |x|. All of these are polynomial in n.
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Definition (PTAS)
PTAS is the class of all NPO problems that admit a polynomial

tome approximation scheme.

Definition (Fully polynomial-time approximation scheme)
1. A has two parameters r and x where x’s are instances of P;

2. A(r,x) returns an r-approximate solution of x in polynomial

1

time both in |z| and —

(since the approximation becomes more difficult when r — 1).




/ Node Cover \

Problem
Given a graph G = (V, F), seek a smallest set of nodes C' C V such
that for each edge F at least one of its endpoints is in C.

Greedy heuristic:

1. Let C = 0.

2. While there are still edges left in GG, choose the node in G with
the largest degree, add it to C, and delete it from G.

However, the performance ratio is lgn.
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2-approximation algorithm
1. Let C = 0.
2. While there are still edges left in G do

(a) choose any edge (u,v);
(b) add both u and v to C}
(c) delete both u and v from G.

Theorem
This algorithm is a 2-approximation algorithm.
Proof. C contains %\C’ | edges that share no common nodes. The

optimum must contain at least one end points of these edges.

LS
OPT(G) — =

- /
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. OPT(G) > §|C\ =




/ Maximum Satisfiability \

Problem (MAXSAT)
Given a set of clauses, find a truth assignment that satisfies the

most of the clauses.

The following is a probabilistic argument that leads us to choose a

good assignment.

1. If ® has m clauses C1 A C5 A --- A C,,, the expected number of

satisfied clauses is

Z Pr|T = C;] where T is a random assignment.

2. However,
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/ Hence at least one choice of x1 = t; can make

S(®) < S(P|y,—¢,) where t; € {0,1}.

3. We can continue this process for : = 2, ..., n, and finally

that satisfies at least S(®) clauses.

4. If each C; has at least k literals, we have

1
};r[T = C] = E|C is satisfiable] > 1 — o
Zm 1

\ clauses.

That is, we get an assignment that satisfies at least m(1 —

That is, we get an assignment {z1 =t1,25 =t2,..., T, =tn}

~

S((I)) < S<(I)|CE1=751) < S((I)|5131=t1,332=t2) < - < S((I)|$1=t1,---,$n=tn)'
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/5. There are at most m clauses that can be satisfied (i.e. an upp;

bound for the optimum).

: m 1
.. performance ratio < =1+

m(l — %) 2k —1°

6. Since k is always at least 1, the above algorithm is a

2-approximation algorithm for MAXSAT.
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/ Maximum Cut \

Problem (MAX-CUT)

Given a graph G = (V, F), partition V into two sets S and V — §
such that there are as many edges as possible between S and

vV -_5.

Algorithm based on local improvement
1. Start from any partition S.

2. If the cut can be made large by
e adding a single node to S, or by
e removing a single node from .S, then do so;

Until no improvement is possible.

- /
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/Theorem This is a 2-approximation algorithm. \
Proof.

1. Decompose V into four parts: V = V; U Vo U V3 U Vy such that

our heuristic is (V1 U Vo, V3 U Vy) where as the optimum is
(Viu Vs, VauVy).

2. Let e;; be the number of edges between V; and V; for
1<i<j<d

3. Then we want to bound
€12 + €14 1+ €23 + €34
€13 + €14 1+ €23 + €24

by a constant.

2e11 +e12 < e13+ ey = e12 < e13 + eqy;

\ e12 < €23 + €24; /
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€34 < €23 + €13;

€34 < €14 + €24.

C.e12 +e34 < e13+ e14 + ea3 + eay;

€14 + €23 < €13 + €14 + €23 + €24.

C.eiaterq +eas+esq < 2(e1s + e1q + ea3 + €24).

Therefore, the performance ratio is bounded above by 2.
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/ Traveling Salesman Problem \

Theorem Unless P = NP, there is no constant performance
ratio for TSP. (That is, TSP ¢ APX unless P = NP.)
Proof. Suppose TSP is c-approximable for some constant c.
Then we can solve Hamilton Cycle in polynomial time.

1. Given any graph G = (V, E), assign

1 if(i,j) € E

di. j) =
D=\ v it 2B

2. If there is a c-approximation that can solve this instance in
polynomial time, we can determine whether G has an HC in
poly. time.

3. Suppose GG has an HC. Then the approximation algorithm
\ returns a solution with total distance at most ¢|V|, which /
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/ means it cannot include any (i, j) € E. \

3
3
distance satisfies the triangle inequality d(i, j) + d(j, k) < d(i, k).

Remark There is a s-approximation algorithm for TSP when its
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/ Knapsack \

Problem Given n weights w;, 1,...,n, a weight limit W, and n
values v;, 1 = 1,...,n, find a subset S C {1,2,...,n} such that
D ics Wi <Wand ) .o v; is maximum.
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Pseudopolynomial algorithm
V(w,1): the largest value from the first ¢ items so that their total
weight is < w
V(w,i) = max{V(w,i—1),V(w—w;i—1)+v;}
V(w,0) = 0

The time complexity is O(nW).
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Another algorithm

1. Let ¥V = max{vy,vo,...,v,}.

2. Define W (%, v) to be the minimum weight from the first ¢ items
so that their total value is V.

3.
W(i,v) = min{W(E —1,0), W —1,v—v;) +w;}
W(0,0) = 0
W(0,v) = ooifwv>0.

Time complexity is O(n?V) since 1 <i < n and 0 < v < n).

- /
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Approximation algorithm

Given z = (wq, ..., wn, W, v1,...,0,), construct

v’ = (wi,...,wp, W,v],...,v,) where v] = 2" - | 2 | for some

2
n2bV)7

parameter b. We can find optimal solution for z’ in time O(

using it as an approximate solution for =.

Theorem The above approximation algorithm is a

polynomial-time approximation scheme.
(In fact, it is an FPTAS.)
Proof.

g (P g (e g vp > g vgzg v; — n2°.
€S €S’ €S’ 1€S €S

S: optimal for x; S’: optimal for z’

- /
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/Performance ratio

2ics Vi DiesVi 1 1 1
< b n2b < n2b <
DTS SR R s g

by setting b = [lg %]

Time complexity becomes O(”;bv) = O(”?S)
1

.. performance ratio = =, which can be arbitrarily close to 1.
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/ Approximation Preserving Reductions \

L-reduction (A <; B)
A, B: two optimization problems
f: a function from instances of A to instances of B

g: a function from feasible solutions of f(x) to feasible solutions of

x
(f,g) is called an L-reduction iff
1. f and g are computable in logarithmic space;

2. there exists constant o such that

OPT(f(z)) <a-OPT(x)

\ for all instances = of A; /
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/3. there exists constant (3 such that \

|OPT(x) —ma(xz,g(s))| < 8- |OPT(f(x)) —mp(f(x),s)]

where s is any feasible solution of f(x).

Remark
e [-reductions are transitive. (A <, Band B <, C = A <, (")

e If there is an L-reduction from A to B and B € APX, then we
have A € APX.

e [-reductions are closed in APX, PT'AS, and FPTAS.

- /
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AP-reduction A <,p B
A, B: two optimization problems

f: a function T4 x (1,00) — Ip

(I4: instances of A; Ip: instances of B)

g: a function Iy X Fg X (1,00) — Fy
( F'a: feasible solutions for A; Fg: feasible solutions for B)

(R, S) is called an AP-reduction iff

1. Fp(f(x,r)) #£0if Fy(x) #0 forall z € [, and r > 1;
(x has solutions implies f(z,r) has solutions)

2. g(x,y,r) € Fa(x) for any x € I, y € Fp(f(x,r)) and r > 1;
(the solution for f(x,r) can be sent back to be one for x by g)

3. f and g are computable in logarithmic space for any fixed

\ rational r > 1; /
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/4. there exists constant a such that \

Ra(x,g9(x,y,7)) <1+ a(r — 1) whenever Rp(f(x,7),y) <r for
all z € T4,y € Fp(f(x,r)) and r > 1.
(the performance ratio for B is preserved in A by (f,g))

Theorem Let Aec APX. If A<y B, then A <,p B.
(That is, AP-reducibility is more general than L-reducibility.)

Theorem MAX3SAT is APX-complete under AP-reducibility.

Remarks

e APX-completeness (under AP-reductions) is built by the
PCP-characterization of NP.

\o L-reducibility builds MAXSNP-completeness. /
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