Theory of Computation

Qualification Examination
CSIE, NCNU

Feb. 24, 2003
Problem 1 (20 points) Given any string w, let w^{R} be the reverse string of w. For example, if w is $a_{1} a_{2} a_{3} a_{4}$ where $a_{i} s$ are characters, then w^{R} is $a_{4} a_{3} a_{2} a_{1}$. Let $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$. Prove that there is a Turing machine that can decide whether a string from $\{0,1\}^{*}$ belongs to L.

Problem 2 (20 points) For each of the following cases, describe one computational problem that belongs to it.
a. NP-complete;
b. P-complete;
c. NL-complete.

Problem 3 (20 points) Prove that there exists a language with alphabet $\{0,1\}$ that is not decidable.

Problem 4 (20 points) Which function grows faster? (a) $2^{\sqrt{\log n}}$; (b) n; (c) $(\log n)^{2003}$. Justify your answer.

Problem 5 (20 points) Let M be a probabilistic polynomial time Turing machine and let C be a language where, for some fixed $0<\epsilon_{1}<\epsilon_{2}<1$,
a. $w \notin C$ implies $\operatorname{Pr}[M$ accepts $w] \leq \epsilon_{1}$, and
b. $w \in C$ implies $\operatorname{Pr}[M$ accepts $w] \geq \epsilon_{2}$.

Show that $C \in B P P$. (Note: The class $B P P$ is the class of sets computable by probabilistic polynomial time Turing machines that have the error probability bounded by a constant $c<1 / 2$.)

