Theory of Computation Midterm Exam. April 8~13, 2004

Problem 1 (10 points) Let f(n) and g(n) be any two of the following functions. Determine whether (i) f(n) = O(g(n)); (ii) $f(n) = \Omega(g(n))$; $f(n) = \Theta(g(n))$:

(a) n^3 ; (b) $n^{\log n}$; (c) 2^n ; (d) n^2 if n is odd, 2^n otherwise.

Problem 2 (10 points) Prove the validity of the Boolean formula

 $(p \lor q) \land (\neg q \lor s) \land (\neg s \lor p) \land (\neg p \lor r) \land (\neg r \lor \neg p \lor t) \Rightarrow (t \land r).$

Problem 3 (10 points) Prove that if a language can be decided by a Turing machine in time O(f(n)), then it can be decided in time f(n). (Hint: Use the Linear Speedup Theorem.)

Problem 4 (10 points) Define NAND(x, y) to be $\neg(x \land y)$. Show that all Boolean functions can be expressed in terms of NAND. (Note: You can also use constants **True** and **False**, together with Boolean variables.)

Problem 5 (10 points) Let $L = \{M | M(\epsilon) = "yes"\}$. Prove that L is not recursive.

Problem 6 (10 points) Let H be $\{M; x | M(x) \neq \nearrow\}$. Prove that the complement of H is not recursively enumerable.

Problem 7 (10 points) Show that a language L is recursive if and only if its complement \overline{L} is recursive.