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Example 1. For all integers m and n, if m and n are even, then m + n is
even.

Proof. Since m and n are even numbers, there exist integers m′ and n′

such that m = 2m′ and n = 2n′. Hence m + n = 2m′ + 2n′ = 2(m′ + n′)
is an even number.

Example 2. For all odd integers n, the number n2 − 1 is divisible by 8.

Proof. Let n be an odd number. We divide the discussion into two cases:
n = 4k1 + 1 and n = 4k2 + 3 for some integers k1 and k2.

– n = 4k1 +1: n2−1 = (4k1 +1)2−1 = 16k2
1 +8k1 +1−1 = 8(2k2

1 +k1)
is a multiple of 8.

– n = 4k2 + 3: n2 − 1 = (4k2 + 3)2 − 1 = 16k2
2 + 24k2 + 9 − 1 =

8(2k2
2 + 3k2 + 1) is a multiple of 8.

Since both cases lead to the same conclusion, the claim is proved.

Example 3. For all integers n, if n2 is even , then n is even.

Proof. We show its contraposition: If n is not even, then n2 is not even.
Let n be an odd number and assume n = 2k + 1. Then n2 = (2k + 1)2 =
4k2 +4k +1 is an odd number. Therefore from contraposition, we get the
assertion

Example 4.
√

2 is irrational.

Proof. Suppose
√

2 is rational. We will show contradiction happened.
Since we assume

√
2 is rational, there exist integers m and n, having no

common divisor other than 1, such that
√

2 = m
n . Squaring both sides,

we get 2 = m2

n2 . Thus, 2n2 = m2. Hence 2 divides m2, and subsequently, 2
divides m. Let m = 2m1 where m1 is an integer. Substitute m by 2m1 into
2n2 = m2. We get 2n2 = 4m2

1. Hence 2m2
1 = n2. By the same argument,

2 divides n2, and thus 2 divides n. Therefore 2 is a common divisor of m
and n, which contradicts the assumption that m and n have no common
divisor other than 1. Hence,

√
2 is irrational.



Example 5. For all integers a and p, if p is prime, then either p is a divisor
of a, or a and p have no common factor greater than 1.

Proof. Let p be a prime. Assume a and p have common divisor greater
than 1. Since p is a prime, the only positive factor of p other than 1 is p
itself. Therefore the common divisor of a and p greater than 1 can only
be p. Thus, we get the conclusion that p divides a.

Example 6. For all integers n, n2 − 1 is either divisible by 8 or relatively
prime to 8.

Proof. We divide n into two cases: n = 2k and n = 2k +1. When n = 2k,
n2 − 1 is always an odd number, and thus, relatively prime to 8. When
n = 2k + 1, from Example 2, we get the claim that n2 − 1 is divisible by
8. Since all of the cases lead to the conclusion, the claim is proved.

Example 7. For all integers n, the following statements are equivalent:

(1) n is even;
(2) n2 is even;
(3) nk is even for all integers k ≥ 1.

Proof. We use cyclic argument to establish their equivalence.

(1)⇒(3): The multiplication of two even numbers is again even. Hence
if n is even, nk for k ≥ 1 are all even numbers.

(3)⇒(2): Setting k = 2 we get the implication.

(2)⇒(1): Has been proven in Example 3.

Example 8. Every finite, directed, and acyclic graph must have a source.

Proof. Note that a graph is acyclic iff it has no cycle, and a node is
a source iff it has no incoming edges. Suppose there exists a counter
example. That is, these is a finite, directed, and acyclic graph G that has
no source. Then pick up any node in G, say n1. Since there is no source in
G, n1 has an incoming edge. Trace back along this edge. There is a node
n2 that connects n1. This process can continue, and we can eventually
find an infinite sequence n1, n2, . . ., ni, . . . such that there is always an
edge from ni+1 to ni for each integer i ≥ 1. However, G is a finite graph,
and thus, some node must repeat infinite times on this sequence. Let p
be such a node. There exist ns = nt = p and s < t. This indicates a
cycle starting from nt = p and ending at ns = p, which contradicts the
assumption that G is acyclic.



Example 9. There exists a number that is not rational.

Proof. We have shown that
√

2 is not rational in Example 4. Hence the
existence is established.

Example 10. Given any seven integers a1, a2, . . . , a7, there always exist
1 ≤ i ≤ j ≤ 7 such that ai + ai+1 + · · ·+ aj is a multiple of 7.

Proof. We show this by using the pigeon hole principle. Let Sk = a1+a2+
· · ·+ ak for 1 ≤ k ≤ 7. Without loss of generality, we can assume all Sk’s
for 1 ≤ k ≤ 7 are not multiple of 7; otherwise, we can simply set i = 1 and
j = k and the claim is established. Hence the remainders of Sk’s divided
by 7 can only be 1, 2, 3, 4, 5, or 6. However, there are seven Sk’s but six
remainders. By the pigeon hole principle, there exist 1 ≤ u < v ≤ 7 such
that the remainders of Su and Sv are the same with respect to the divisor
7. Consequently, Sv − Su is a multiple of 7. Now let i = u + 1 and j = v,
and accordingly, ai + ai+1 + · · ·+ aj is a multiple of 7.

Example 11. Given any integer n, there is an integer m with m > n.

Proof. Let n be any integer. Let m = n + 1, then clearly m = n + 1 > n.

Example 12. Given a natural number n, there is always a prime number
p that is greater than n.

Proof. Let n be any natural number. Set m = n! + 1. We claim that any
prime factor of m is larger than n. Let p be a prime factor of m. If p
is less than or equal to n, n! is a multiple of p. Then by the Euclidean
algorithm, the greatest common divisor of p and m is 1. That is, p cannot
divide m, a contradiction. Therefore, such p must be larger than n.


