Fundamentals of Mathematics

Supplement 1
Spring, 2008
http://staffweb.ncnu.edu.tw/shieng
Example 1. For all integers m and n, if m and n are even, then $m+n$ is even.

Proof. Since m and n are even numbers, there exist integers m^{\prime} and n^{\prime} such that $m=2 m^{\prime}$ and $n=2 n^{\prime}$. Hence $m+n=2 m^{\prime}+2 n^{\prime}=2\left(m^{\prime}+n^{\prime}\right)$ is an even number.

Example 2. For all odd integers n, the number $n^{2}-1$ is divisible by 8 .
Proof. Let n be an odd number. We divide the discussion into two cases: $n=4 k_{1}+1$ and $n=4 k_{2}+3$ for some integers k_{1} and k_{2}.
$-n=4 k_{1}+1: n^{2}-1=\left(4 k_{1}+1\right)^{2}-1=16 k_{1}^{2}+8 k_{1}+1-1=8\left(2 k_{1}^{2}+k_{1}\right)$
is a multiple of 8 .
$-n=4 k_{2}+3: n^{2}-1=\left(4 k_{2}+3\right)^{2}-1=16 k_{2}^{2}+24 k_{2}+9-1=$ $8\left(2 k_{2}^{2}+3 k_{2}+1\right)$ is a multiple of 8 .

Since both cases lead to the same conclusion, the claim is proved.
Example 3. For all integers n, if n^{2} is even, then n is even.
Proof. We show its contraposition: If n is not even, then n^{2} is not even. Let n be an odd number and assume $n=2 k+1$. Then $n^{2}=(2 k+1)^{2}=$ $4 k^{2}+4 k+1$ is an odd number. Therefore from contraposition, we get the assertion

Example 4. $\sqrt{2}$ is irrational.
Proof. Suppose $\sqrt{2}$ is rational. We will show contradiction happened. Since we assume $\sqrt{2}$ is rational, there exist integers m and n, having no common divisor other than 1 , such that $\sqrt{2}=\frac{m}{n}$. Squaring both sides, we get $2=\frac{m^{2}}{n^{2}}$. Thus, $2 n^{2}=m^{2}$. Hence 2 divides m^{2}, and subsequently, 2 divides m. Let $m=2 m_{1}$ where m_{1} is an integer. Substitute m by $2 m_{1}$ into $2 n^{2}=m^{2}$. We get $2 n^{2}=4 m_{1}^{2}$. Hence $2 m_{1}^{2}=n^{2}$. By the same argument, 2 divides n^{2}, and thus 2 divides n. Therefore 2 is a common divisor of m and n, which contradicts the assumption that m and n have no common divisor other than 1 . Hence, $\sqrt{2}$ is irrational.

Example 5. For all integers a and p, if p is prime, then either p is a divisor of a, or a and p have no common factor greater than 1 .

Proof. Let p be a prime. Assume a and p have common divisor greater than 1 . Since p is a prime, the only positive factor of p other than 1 is p itself. Therefore the common divisor of a and p greater than 1 can only be p. Thus, we get the conclusion that p divides a.

Example 6. For all integers $n, n^{2}-1$ is either divisible by 8 or relatively prime to 8 .

Proof. We divide n into two cases: $n=2 k$ and $n=2 k+1$. When $n=2 k$, $n^{2}-1$ is always an odd number, and thus, relatively prime to 8 . When $n=2 k+1$, from Example 2, we get the claim that $n^{2}-1$ is divisible by 8. Since all of the cases lead to the conclusion, the claim is proved.

Example 7. For all integers n, the following statements are equivalent:
(1) n is even;
(2) n^{2} is even;
(3) n^{k} is even for all integers $k \geq 1$.

Proof. We use cyclic argument to establish their equivalence.
$(1) \Rightarrow(3)$: The multiplication of two even numbers is again even. Hence if n is even, n^{k} for $k \geq 1$ are all even numbers.
$(3) \Rightarrow(2)$: Setting $k=2$ we get the implication.
$(2) \Rightarrow(1)$: Has been proven in Example 3.
Example 8. Every finite, directed, and acyclic graph must have a source.
Proof. Note that a graph is acyclic iff it has no cycle, and a node is a source iff it has no incoming edges. Suppose there exists a counter example. That is, these is a finite, directed, and acyclic graph G that has no source. Then pick up any node in G, say n_{1}. Since there is no source in G, n_{1} has an incoming edge. Trace back along this edge. There is a node n_{2} that connects n_{1}. This process can continue, and we can eventually find an infinite sequence $n_{1}, n_{2}, \ldots, n_{i}, \ldots$ such that there is always an edge from n_{i+1} to n_{i} for each integer $i \geq 1$. However, G is a finite graph, and thus, some node must repeat infinite times on this sequence. Let p be such a node. There exist $n_{s}=n_{t}=p$ and $s<t$. This indicates a cycle starting from $n_{t}=p$ and ending at $n_{s}=p$, which contradicts the assumption that G is acyclic.

Example 9. There exists a number that is not rational.
Proof. We have shown that $\sqrt{2}$ is not rational in Example 4. Hence the existence is established.

Example 10. Given any seven integers $a_{1}, a_{2}, \ldots, a_{7}$, there always exist $1 \leq i \leq j \leq 7$ such that $a_{i}+a_{i+1}+\cdots+a_{j}$ is a multiple of 7 .

Proof. We show this by using the pigeon hole principle. Let $S_{k}=a_{1}+a_{2}+$ $\cdots+a_{k}$ for $1 \leq k \leq 7$. Without loss of generality, we can assume all S_{k} 's for $1 \leq k \leq 7$ are not multiple of 7 ; otherwise, we can simply set $i=1$ and $j=k$ and the claim is established. Hence the remainders of S_{k} 's divided by 7 can only be $1,2,3,4,5$, or 6 . However, there are seven S_{k} 's but six remainders. By the pigeon hole principle, there exist $1 \leq u<v \leq 7$ such that the remainders of S_{u} and S_{v} are the same with respect to the divisor 7. Consequently, $S_{v}-S_{u}$ is a multiple of 7 . Now let $i=u+1$ and $j=v$, and accordingly, $a_{i}+a_{i+1}+\cdots+a_{j}$ is a multiple of 7 .

Example 11. Given any integer n, there is an integer m with $m>n$.
Proof. Let n be any integer. Let $m=n+1$, then clearly $m=n+1>n$.
Example 12. Given a natural number n, there is always a prime number p that is greater than n.

Proof. Let n be any natural number. Set $m=n!+1$. We claim that any prime factor of m is larger than n. Let p be a prime factor of m. If p is less than or equal to $n, n!$ is a multiple of p. Then by the Euclidean algorithm, the greatest common divisor of p and m is 1 . That is, p cannot divide m, a contradiction. Therefore, such p must be larger than n.

