Fundamentals of Mathematics

The Midterm Examination Spring, 2008 http://staffweb.ncnu.edu.tw/shieng

Date: April 21, 2008

Problem 1 (10 points) Show that

 $1 \cdot 2 + 2 \cdot 3 + \dots + m(m+1) \ge \frac{m^3}{3}$ for integers $m \ge 0$

by the method of mathematical induction.

Problem 2 (10 points) Show that $2^m > m^2$ for $m \ge 5$.

Problem 3 (10 points) Show that

$$\frac{c_1 + \dots + c_m}{m} \ge (c_1 \cdots c_m)^{\frac{1}{m}} \text{ where } c_i \ge 0 \text{ for } 1 \le i \le m.$$

Problem 4 (10 points) Show that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{m}} > \sqrt{m}$$

for integers $m \geq 2$.

Problem 5 (10 points) Let $f : A \to B$ for any sets A and B. Let $f^{-1}(T) = \{a \mid f(a) \in T \text{ where } a \in A\}$ for any $T \subseteq B$. Show that

 $f^{-1}(\overline{T}) = \overline{f^{-1}(T)}.$

Problem 6 (10 points) Let $f : A \to B$ for sets A and B. Let $f(S) = \{f(a) | a \in S\}$ for any $S \subseteq A$. Give a counterexample to show that

$$f(\overline{S}) \supseteq \overline{f(S)}$$

is wrong.

Problem 7 (10 points) Let m and n be any natural numbers. Show that

$$gcd(m,n) = gcd(n,m \mod n)$$

where gcd is the function that evaluates the greatest common divisor of its arguments.

Problem 8 (10 points) Find all solutions of this equation:

 $\frac{4}{15} = \frac{1}{m} + \frac{1}{n}$ where *m* and *n* are natural numbers.

Problem 9 (10 points) For all integers m, show that the following statements are equivalent:

- (1) m is even;
- (2) m^2 is even;
- (3) m^k is even for all integers $k \ge 1$.

Problem 10 (10 points) Derive the negation of the following statement:

 $\forall_{n \ge 0} \exists_{m \ge n} \left[P(m, n) \implies \neg Q(m, n) \right].$