Fundamentals of Mathematics

The Midterm Examination
Spring, 2008
http://staffweb.ncnu.edu.tw/shieng
Date: April 21, 2008
Problem 1 (10 points) Show that

$$
1 \cdot 2+2 \cdot 3+\cdots+m(m+1) \geq \frac{m^{3}}{3} \quad \text { for integers } m \geq 0
$$

by the method of mathematical induction.
Problem 2 (10 points) Show that $2^{m}>m^{2}$ for $m \geq 5$.
Problem 3 (10 points) Show that

$$
\frac{c_{1}+\cdots+c_{m}}{m} \geq\left(c_{1} \cdots c_{m}\right)^{\frac{1}{m}} \text { where } c_{i} \geq 0 \text { for } 1 \leq i \leq m .
$$

Problem 4 (10 points) Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{m}}>\sqrt{m}
$$

for integers $m \geq 2$.
Problem 5 (10 points) Let $f: A \rightarrow B$ for any sets A and B. Let $f^{-1}(T)=\{a \mid f(a) \in T$ where $a \in A\}$ for any $T \subseteq B$. Show that

$$
f^{-1}(\bar{T})=\overline{f^{-1}(T)} .
$$

Problem 6 (10 points) Let $f: A \rightarrow B$ for sets A and B. Let $f(S)=$ $\{f(a) \mid a \in S\}$ for any $S \subseteq A$. Give a counterexample to show that

$$
f(\bar{S}) \supseteq \overline{f(S)}
$$

is wrong.
Problem 7 (10 points) Let m and n be any natural numbers. Show that

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \quad \bmod n)
$$

where gcd is the function that evaluates the greatest common divisor of its arguments.

Problem 8 (10 points) Find all solutions of this equation:

$$
\frac{4}{15}=\frac{1}{m}+\frac{1}{n} \quad \text { where } m \text { and } n \text { are natural numbers. }
$$

Problem 9 (10 points) For all integers m, show that the following statements are equivalent:
(1) m is even;
(2) m^{2} is even;
(3) m^{k} is even for all integers $k \geq 1$.

Problem 10 (10 points) Derive the negation of the following statement:

$$
\forall_{n \geq 0} \exists_{m \geq n}[P(m, n) \Longrightarrow \neg Q(m, n)] .
$$

