Fundamentals of Mathematics
 Final Examination
 Spring, 2008
 http://staffweb.ncnu.edu.tw/shieng

Problem 1 (20 points)

1. Let $p(x)$ be a uni-variable integral polynomial. That is, we can write $p(x)$ as $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ where $a_{i}^{\prime} s$ are integers and n is its degree. Show that the number of roots (solutions) of $p(x)=0$ is at most n.
2. Show that the number of all such polynomials is countable.
3. Show that there exists a real number that is not the root of any integral polynomial.

Problem 2 (20 points) Show that the cardinalities of \mathbb{R} and the open interval $(0,1)$ are equal.

Problem 3 (20 points) Let $A_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$. That is, we remove the open middle third $\left(\frac{1}{3}, \frac{2}{3}\right)$ from the interval $[0,1]$. Let

$$
A_{n+1}=\frac{A_{n}}{3} \cup\left(\frac{2}{3}+\frac{A_{n}}{3}\right) \quad \text { for } n \geq 1 .
$$

Intuitively speaking, A_{n+1} is obtained from A_{n} by removing every open middle third from all intervals of A_{n}. Let $A_{\infty}=\lim _{n \rightarrow \infty} A_{n}$.

1. Show that the 'length' of A_{∞} is zero. That is, the total length of the removed intervals of A_{∞} from $[0,1]$ equals to 1 .
2. Show that the cardinality of A_{∞} is uncountable.
(Note: You can get more information by looking up the keyword 'Cantor Set' from Wikipedia.)

Problem 4 (20 points) Compare the growth rate of

$$
2^{n} \text { and }\binom{n}{\frac{n}{3}}
$$

as n tends to infinity. (Note: Stirling formula asserts $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.)

