Fundamentals of Mathematics
 Homework Set 3
 Spring, 2008
 http://staffweb.ncnu.edu.tw/shieng

Due date: April 7
Example 1 Show that n lines in a plane can divide the plane into at most $\frac{n(n+1)}{2}+1$ regions.

Example 2 Show that $2^{n} \geq n^{2}$ for $n \geq 4$.

Example 3 Let $r(n)$ be the number of solutions (x, y) for $x+2 y=n$, where $n, x, y \geq 0$ and are integers. Show that $r(n)=\frac{n+1}{2}+\frac{1+(-1)^{n}}{4}$.

Example 4 Let $a_{2 k}=3 k^{2}, a_{2 k-1}=3 k(k-1)+1$. Let $S_{n}=a_{1}+a_{2}+\cdots+a_{n}$.
Show that

$$
\left\{\begin{array}{l}
S_{2 k-1}=\frac{k}{2}\left(4 k^{2}-3 k+1\right) \\
S_{2 k}=\frac{k}{2}\left(4 k^{2}+3 k+1\right) \quad \text { for } k \geq 1
\end{array}\right.
$$

Example 5 Show that

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq\left(a_{1} \cdots a_{n}\right)^{\frac{1}{n}} \text { where } a_{i} \geq 0 \text { for any integer } n .
$$

Example 6 Show that for any $n+1$ numbers out of $1,2, \ldots, 2 n$, there always exist two numbers such that one is a multiple of the other.

Example 7 Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n}
$$

for all integers $n \geq 1$.

