Fundamentals of Mathematics
 Homework Set 2
 Spring, 2008
 http://staffweb.ncnu.edu.tw/shieng

Due date: March 10
Problem 1 Please answer the following questions.

1. What is x^{0} for $x \neq 0$?
2. What is 0^{x} for $x>0$?

3 . What is 0^{0} ?
Problem 2 Let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. How many functions from \mathbb{Z}_{n} to \mathbb{Z}_{n} such that $f(k) \neq k$ for all $k \in \mathbb{Z}_{n}$? Let this set be F_{n}.

1. Let $A_{i}=\left\{f \mid f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}\right.$ with $\left.f(i)=i\right\}$ for all $i \in \mathbb{Z}_{n}$. Show that

$$
F_{n}=\bigcap_{i \in \mathbb{Z}_{n}} \overline{A_{i}} .
$$

2. Let $\chi_{A_{i}}$ be the indicator function of A_{i} for $i \in \mathbb{Z}_{n}$. Show that

$$
\operatorname{Pr}\left(f \in \overline{A_{i}}\right)=\operatorname{Pr}\left(\mathbf{1}-\chi_{A_{i}}\right)=1-\frac{1}{n} .
$$

3. Show that

$$
\operatorname{Pr}\left(f \in F_{n}\right)=\left(1-\frac{1}{n}\right)^{n} .
$$

4. Let $n \rightarrow \infty$. Show that $\operatorname{Pr}\left(f \in F_{\infty}\right)=e^{-1}$. That is, with probability e^{-1}, a random function maps from natural numbers to natural numbers with no fixed point.

Problem 3 Translate 2008 into the corresponding Roman numeral.
Problem 4 Let $f: A \rightarrow B$ for any sets A and B. Let $f(S)=\{f(a) \mid a \in S\}$ for any $S \subseteq A$. Let $f^{-1}(T)=\{a \mid f(a) \in T$ for some $a \in A\}$ for any $T \in B$. Show that

1. $f(\bar{S}) \supseteq \overline{f(S)}$;
2. $f^{-1}(\bar{T})=\overline{f^{-1}(T)}$;
3. $f^{-1}(f(S)) \supseteq S$;
4. $f\left(f^{-1}(T)\right) \subseteq T$.

Give examples for Cases 1, 3, 4 to illustrate when equality may not hold.

