Fundamentals of Mathematics

Spring, 2008

http://staffweb.ncnu.edu.tw/shieng

Due date: March 3

Problem 1 Show that there do not exist natural numbers m and n such that $\frac{7}{17} = \frac{1}{m} + \frac{1}{n}$.

Problem 2 Show that $n^2 - n + 41$ is not always prime for all integers $n \ge 0$.

Problem 3 Consider an 8×8 -chessboard whose two diagonally opposite corners are removed (as shown in the following figure). Is it possible to place

31 dominoes with size 1×2 (\square or \square) to cover all of the squares?

Problem 4 Cut a chessboard into four pieces and then assemble them into a 5×13 -rectangle. There are $8 \times 8 = 64$ squares in the chessboard, but there are totally $5 \times 13 = 65$ squares in the rectangle. Hence we conclude 64 = 65. Is this derivation correct?

