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-
Cardinality

Let A and B be two sets. We say

@ Card(A) = Card(B) iff there is a bijection between A and B.

@ Card(A)
@ Card(A)

< Card(B) iff there is an injection from A to B.
> Card(B) iff there is a surjection from A to B.
Theorem (Schroeder-Bernstein)

If Card(A) < Card(B) and Card(A) > Card(B), then
Card(A) = Card(B).

)
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]
Finite Set

@ A set is called finite iff there exists integers n > 0 such that
Card(A) = Card({1,2,...,n}).
@ A set is called infinite iff it is not finite.
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R —
Denumerable Set

@ A set is called denumerable iff
Card(A) = Card(N) .
@ A set is called countable iff it is either finite of denumerable.

Theorem (Dedekind-Peirce)

A set is infinite if and only if it has a bijection with a proper subset of itself.

v

Theorem
@ The set Z is denumerable. (n < 2n + 1, (—n) < 2n)

@ The set Q is denumerable.




Theorem (Georg Cantor)

The set R of all real numbers is not countable.

Proof.
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R —
Power Set |

24 denotes the set of all subsets of A.

Theorem
Card(A) < Card(24) for any set A. (< but not =)

Proof.

Suppose there is a bijection between A and 24: a < f(a) € 2. Define C
as

{a]ae A anda ¢ f(a)} .
Then C'is a subset of A and thus there exists a € A such that f(a) = C.
@ Suppose o € C. By the definition of C, a & C.
@ Suppose o € C. By the definition of C', o € C.
All of the cases lead to a contradiction. O
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R —
Power Set I

Corollary (Bertrand Russel)

There is no set of all sets.
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R —
More Properties

@ Card(2%) = Card(R)
@ Card(N*) = Card(N) for any k € N

© Let X be a countable set. Let ¥* = {z| = is a finite string over X}
Then Card(X*) = Card(N)

Q@ Card(R*) = Card(R) for any k € N
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Let ¥ = {0,1}. L C X* is called a language over .

¥* is countable (denumerable).
The set of all languages over ¥ is 2*", which is uncountable.
A program is a finite string. The set of all programs is countable.

There exists a language L such that there is no program that can
answer whether x € L for any z € ¥*.
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