Fundamentals of Mathematics
 Lecture 8: Set Theory

Guan-Shieng Huang

National Chi Nan University, Taiwan
Spring, 2008

Cardinality

Let A and B be two sets. We say
(1) $\operatorname{Card}(A)=\operatorname{Card}(B)$ iff there is a bijection between A and B.
(2) $\operatorname{Card}(A) \leq \operatorname{Card}(B)$ iff there is an injection from A to B.
(3) $\operatorname{Card}(A) \geq \operatorname{Card}(B)$ iff there is a surjection from A to B.

Theorem (Schroeder-Bernstein)
If $\operatorname{Card}(A) \leq \operatorname{Card}(B)$ and $\operatorname{Card}(A) \geq \operatorname{Card}(B)$, then
$\operatorname{Card}(A)=\operatorname{Card}(B)$.

Finite Set

- A set is called finite iff there exists integers $n \geq 0$ such that $\operatorname{Card}(A)=\operatorname{Card}(\{1,2, \ldots, n\})$.
- A set is called infinite iff it is not finite.

Denumerable Set

- A set is called denumerable iff

$$
\operatorname{Card}(A)=\operatorname{Card}(\mathbb{N})
$$

- A set is called countable iff it is either finite of denumerable.

Theorem (Dedekind-Peirce)
A set is infinite if and only if it has a bijection with a proper subset of itself.
Theorem

- The set \mathbb{Z} is denumerable. $(n \leftrightarrow 2 n+1,(-n) \leftrightarrow 2 n)$
- The set \mathbb{Q} is denumerable.

Theorem (Georg Cantor)
The set \mathbb{R} of all real numbers is not countable.
Proof.

Power Set I

2^{A} denotes the set of all subsets of A.
Theorem
$\operatorname{Card}(A)<\operatorname{Card}\left(2^{A}\right)$ for any set A. (\leq but not $=$)

Proof.
Suppose there is a bijection between A and $2^{A}: a \leftrightarrow f(a) \in 2^{A}$. Define C as

$$
\{a \mid a \in A \text { and } a \notin f(a)\}
$$

Then C is a subset of A and thus there exists $\alpha \in A$ such that $f(\alpha)=C$.

- Suppose $\alpha \in C$. By the definition of $C, \alpha \notin C$.
- Suppose $\alpha \notin C$. By the definition of $C, \alpha \in C$.

All of the cases lead to a contradiction.

Power Set II

Corollary (Bertrand Russel)

There is no set of all sets.

More Properties

(1) $\operatorname{Card}\left(2^{\mathbb{Z}}\right)=\operatorname{Card}(\mathbb{R})$
(2) $\operatorname{Card}\left(\mathbb{N}^{k}\right)=\operatorname{Card}(\mathbb{N})$ for any $k \in \mathbb{N}$
(3) Let Σ be a countable set. Let $\Sigma^{*}=\{x \mid x$ is a finite string over $\Sigma\}$ Then $\operatorname{Card}\left(\Sigma^{*}\right)=\operatorname{Card}(\mathbb{N})$
(9) $\operatorname{Card}\left(\mathbb{R}^{k}\right)=\operatorname{Card}(\mathbb{R})$ for any $k \in \mathbb{N}$

Let $\Sigma=\{0,1\} . L \subseteq \Sigma^{*}$ is called a language over Σ.

- Σ^{*} is countable (denumerable).
- The set of all languages over Σ is $2^{\Sigma^{*}}$, which is uncountable.
- A program is a finite string. The set of all programs is countable.
- There exists a language L such that there is no program that can answer whether $x \in L$ for any $x \in \Sigma^{*}$.

References

P. R. Halmos, Naive Set Theory, Springer-Verlag, 1974.

