Fundamentals of Mathematics
 Lecture 7: Asymptotics

Guan-Shieng Huang

National Chi Nan University, Taiwan
Spring, 2008

The Definition of Big-O Notation

Definition (Big O)
$f(n)=\mathrm{O}(g(n))$ iff there exist constants c and n_{0} such that

$$
|f(n)| \leq c|g(n)| \quad \text { for all } n \geq n_{0}
$$

In this definition, observe the following implications:
(1) We only care about the behaviors of f and g when n is very large. $\left(n_{0}\right)$
(2) A constant coefficient is ignored. (c)
(3) g is an upper bound.

The Concept of an 'Upper Bound'

Definition (N. G. de Bruijn's L-notation)
$L(n)$ stands for a number whose absolute value $\leq n$.
$1+L(5)=L(6), L(2) L(3)=L(6), L(2)+L(3)=L(5), e^{L(5)}=L\left(e^{5}\right)$.
But $L(5)-L(3)=L(8)$.
Let $a=L(5)$ and $b=L(6)$. We cannot conclude that $a<b,|a|<|b|$, or even $L(a)=L(b)$.

$n \rightarrow \infty$

$$
1000+2000 n=\mathrm{O}\left(n^{2}\right)
$$

Hence for small $n, f(n)=\mathrm{O}(g(n))$ may not imply $|f(n)| \leq|g(n)|$.

The Constant Coefficient c

$2000 n=\mathrm{O}(n)$. However, $2000 n \not \leq n$ for all n.

One-Way Equality

$f(n)=\mathrm{O}(g(n))$ cannot be written as $\mathrm{O}(g(n))=f(n)$.

$$
n=\mathrm{O}\left(n^{2}\right), \mathrm{O}\left(n^{2}\right)=n^{2}, \quad \text { but } n \neq n^{2} .
$$

The meaning of ' $=$ ' in Big O

- $\mathrm{O}(g(n))$ stands for the set of all functions $f(n)$ such that $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$ for some c and n_{0}.
- $f(n)=\mathrm{O}(g(n))$ means $f(n) \in \mathrm{O}(g(n))$. $\mathrm{O}(f(n))=\mathrm{O}(g(n))$ means $\mathrm{O}(f(n)) \subseteq \mathrm{O}(g(n))$.
- Let S and T be two sets of functions of n.

$$
S+T:=\{f(n)+g(n) \mid f(n) \in S \text { and } g(n) \in T\}
$$

$S-T, S T, S / T, \sqrt{S}, e^{S}, \ln S$ are defined similarly.
$\Longrightarrow \mathrm{O}(f(n))+\mathrm{O}(g(n))$ is defined accordingly.

Example
$\frac{n^{2}}{3}+\mathrm{O}\left(n^{2}\right)=\mathrm{O}\left(n^{3}\right)$ means

$$
\begin{gathered}
S_{1}=\left\{\left.\frac{n^{2}}{3}+f_{1}(n) \right\rvert\, f_{1}(n) \in \mathrm{O}\left(n^{2}\right)\right\} \\
S_{2}=\left\{f_{2}(n) \mid f_{2}(n) \in \mathrm{O}\left(n^{3}\right)\right\}
\end{gathered}
$$

and $S_{1} \subseteq S_{2}$.

Common Errors I

(1) $f(n)=\mathrm{O}(n)$ and $g(n)=\mathrm{O}\left(n^{2}\right) \Longrightarrow f(n) \leq g(n)$.
(2) $1+2+3+\cdots+n=\mathrm{O}(n)+\mathrm{O}(n)+3+\cdots+n$
$=\mathrm{O}(n)+3+4+\cdots+n=\cdots=\mathrm{O}(n)$.
Or, prove $1+2+3+\cdots+n=\mathrm{O}(n)$ by induction:

- Basis: $n=1.1=\mathrm{O}(1)$ holds.
- Induction: Assume the assertion holds when $n=k$.

$$
1+2+\cdots+k+(k+1)=\mathrm{O}(k)+(k+1)=\mathrm{O}(k+1) .
$$

Common Errors II

(3) For any two functions $f(n)$ and $g(n)$, either $f(n)=\mathrm{O}(g(n))$ or $g(n)=\mathrm{O}(f(n))$.

$$
\text { Let } \begin{aligned}
f(n) & = \begin{cases}0 & \text { when } n \text { is odd } \\
1 & \text { when } n \text { is even }\end{cases} \\
g(n) & = \begin{cases}1 & \text { when } n \text { is odd } \\
0 & \text { when } n \text { is even }\end{cases}
\end{aligned}
$$

Or, let $f(n)=\sin (n)$ and $g(n)=\cos (n)$.
(9) $f(n)=\mathrm{O}(g(n)) \Longrightarrow e^{f(n)}=\mathrm{O}\left(e^{g(n)}\right)$.

Let $f(n)=\ln n, g(n)=\frac{1}{2} \ln n$. Then $e^{f(n)}=n, e^{g(n)}=\sqrt{n}$, but $n \neq \mathrm{O}(\sqrt{n})$.

Common Errors III

- $f(n)=\mathrm{O}(g(n)) \Longrightarrow \lg f(n)=\mathrm{O}(\lg g(n))$.

Let $f(n)=2^{1+\frac{1}{n}}, g(n)=2^{\frac{1}{n}}$. Then $\lg f(n)=1+\frac{1}{n}, \lg g(n)=\frac{1}{n}$, but $1+\frac{1}{n} \neq \mathrm{O}\left(\frac{1}{n}\right)$.
(0) $f(n)=\mathrm{O}(1) \Longrightarrow f(n)$ is a constant function. $\cos (n)=\mathrm{O}(1)$.

Other Asymptotic Notations

(1) Ω : lower bound (omega)

$$
f(n)=\Omega(g(n)) \text { iff } g(n)=\mathrm{O}(f(n))
$$

(2) Θ : at the same growth rate (theta)
$f(n)=\Theta(g(n))$ iff $f(n)=\mathrm{O}(g(n))$ and $f(n)=\Omega(g(n))$.
(3) o: (little oh)
$f(n)=\mathrm{o}(g(n))$ iff $|f(n) \leq \epsilon| g(n) \mid$ for all $n \geq n_{\epsilon}$, for all constants
$\epsilon>0$.
Or, we write $f(n) \prec g(n)$.
(1) ω : (little omega)

$$
f(n)=\omega(g(n)) \text { iff } g(n)=\mathrm{o}(f(n))
$$

(6) ~: asymptotic to
$f(n) \sim g(n)$ iff $f(n)=g(n)+\mathrm{o}(g(n))$.
Remark
$f(n)=\widetilde{\mathrm{O}}(g(n))$ means $f(n)=\mathrm{O}\left(g(n) \lg ^{k} g(n)\right)$ for some $k \in \mathbb{N}$.

How to Determine the Asymptotic Relationship Between

 Functions(1) $f(n)=\mathrm{O}\left(g(n)\right.$ if $\lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right| \leq c$ for some constant c.
(2) $f(n)=\Theta\left(g(n)\right.$ if $\lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right| \leq c$ and $\lim _{n \rightarrow \infty}\left|\frac{g(n)}{f(n)}\right| \leq c$.
(3) $f(n)=\mathrm{o}(g(n))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
(1) $f(n) \sim g(n)$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$.
(5) $f(n)=\mathrm{O}\left(g(n)\right.$ iff $\lim \sup _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right| \leq c$ for some constant c.

Useful Properties

(1) $f(n)=\mathrm{o}(g(n))(\mathrm{or}, f(n) \prec g(n)) \Longrightarrow f(n)=\mathrm{O}(g(n))$.
(2) $f(n) \sim g(n) \Longrightarrow f(n)=\Theta(g(n))$.

Useful Patterns

(1) $n^{\alpha} \prec n^{\beta}$ iff $\alpha<\beta$
$n^{\alpha}=\mathrm{O}\left(n^{\beta}\right)$ iff $\alpha \leq \beta$
(2) $\lg ^{k} n \prec n^{\epsilon}$ for any constant $k>0$ and $\epsilon>0$.
(3) $n^{k} \prec c^{n}$ for any constants k and $c>1$.
(9) $f_{1}(n) \prec g_{1}(n)$ and $f_{2}(n) \prec g_{2}(n) \Longrightarrow f_{1}(n) f_{2}(n) \prec g_{1}(n) g_{2}(n)$.

A hierarchy:

$$
1 \prec \lg \lg n \prec \lg n \prec n^{\epsilon} \prec n^{c} \prec n^{\lg n} \prec c^{n} \prec n!\prec n^{n} \prec c^{c^{n}}
$$

where $0<\epsilon<1<c$.

Example

What is the growth rate of $e^{\sqrt{\lg n}}$?
$e^{f(n)} \prec e^{g(n)}$ iff $\lim _{n \rightarrow \infty}(f(n)-g(n))=-\infty$.
$1 \prec f(n) \prec g(n) \Longrightarrow e^{|f(n)|} \prec e^{|g(n)|}$.

$$
\begin{aligned}
& \because 1 \prec \lg \lg n \prec \sqrt{\lg n} \prec \epsilon \lg n \\
& \quad \therefore \lg n \prec e^{\sqrt{\lg n}} \prec n^{\epsilon} .
\end{aligned}
$$

Big-O Manipulation I

(1) $n^{m}=\mathrm{O}\left(n^{m^{\prime}}\right)$ when $m \leq m^{\prime}$.
$\mathrm{O}(f(n))+\mathrm{O}(g(n))=\mathrm{O}(|f(n)|+|g(n)|)$.
Hence $\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}=\mathrm{O}\left(n^{3}\right)+\mathrm{O}\left(n^{3}\right)+\mathrm{O}\left(n^{3}\right)=\mathrm{O}\left(n^{3}\right)$.
(2) $f(n)=\mathrm{O}(f(n))$;
$c \cdot \mathrm{O}(f(n))=\mathrm{O}(f(n))$ if c is a constant; $\mathrm{O}(\mathrm{O}(f(n)))=\mathrm{O}(f(n))$;
$\mathrm{O}(f(n)) \mathrm{O}(g(n))=\mathrm{O}(f(n) g(n))$;
$\mathrm{O}(f(n) g(n))=f(n) \mathrm{O}(g(n))=\mathrm{O}(f(n)) \mathrm{O}(g(n))$.
(3) $\mathrm{O}\left(f(n)^{2}\right)=\mathrm{O}(f(n))^{2}$

Hence we can write $\mathrm{O}(\lg n)^{2}$ instead of $\mathrm{O}\left((\lg n)^{2}\right)$, but not $\mathrm{O}(\lg n)^{-1}$ instead of $\mathrm{O}\left((\lg n)^{-1}\right)$.

Big-O Manipulation II

(9) $\ln (1+\mathrm{O}(f(n)))=\mathrm{O}(f(n))$ if $f(n) \prec 1$.

$$
\begin{aligned}
|\ln (1+x)| & =\left|x\left(1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots\right)\right| \\
& \leq\left|x\left(1+\frac{c}{2}+\frac{c^{2}}{3}+\cdots\right)\right|=\mathrm{O}(x)
\end{aligned}
$$

when $|x| \leq c<1$ for some constant c.
(3) $\exp (\mathrm{O}(f(n)))=1+\mathrm{O}(f(n))$ when $f(n)=\mathrm{O}(1)$.

$$
\begin{aligned}
\exp (x) & =1+x\left(\frac{x}{2!}+\frac{x^{2}}{3!}+\cdots\right) \\
& =1+x \cdot \mathrm{O}(1) \quad \text { when } x=\mathrm{O}(1) \\
& =1+\mathrm{O}(x)
\end{aligned}
$$

Big-O Manipulation III

(0) $(1+\mathrm{O}(f(n)))^{\mathrm{O}(g(n))}=1+\mathrm{O}(f(n) g(n))$ if $f(n) \prec 1$ and $f(n) g(n)=\mathrm{O}(1)$.

$$
\begin{aligned}
(1+\mathrm{O}(f(n)))^{\mathrm{O}(g(n))} & =\exp \left(\ln (1+\mathrm{O}(f(n)))^{\mathrm{O}(g(n))}\right) \\
& =\exp (\mathrm{O}(g(n)) \ln (1+\mathrm{O}(f(n)))) \\
& =\exp (\mathrm{O}(g(n)) \mathrm{O}(f(n))) \\
& =1+\mathrm{O}(f(n) g(n))
\end{aligned}
$$

The Analysis of Algorithms

- the time complexity of an algorithm
- the time complexity of a problem
- the analysis of the time complexity of an algorithm
- P : a problem
- A : an algorithm for solving P
- x : an instance of P

Complexity of Algorithms I

- the time complexity of A is $\mathrm{O}(f(n))$:
for any x with $|x|=n$, the execution time of $A(x)$ is $\mathrm{O}(f(n))$. This is also called the worst-case time complexity of A.
- the time complexity of A is $\Omega(f(n))$:
for any x with $|x|=n$, the execution time of $A(x)$ is $\Omega(f(n))$.
- the worst-case time complexity of A is $\Theta(f(n))$: the time complexity of A is $\mathrm{O}(f(n))$ and for any n, there exists x with $|x|=n$ such that the execution time of $A(x)$ is $\Omega(f(n))$.

Remark

People often use $\mathrm{O}(f(n))$ instead of $\Theta(f(n))$ when refer to the worst-case time complexity of an algorithm.

Complexity of Problems

- the time complexity of P is $\mathrm{O}(f(n))$: there exists an algorithm whose time complexity is $\mathrm{O}(f(n))$
- the time complexity of P is $\Omega(f(n))$: any algorithm that solves P must have worst-case time complexity $\Omega(f(n))$
- the time complexity of P is $\Theta(f(n))$: the lower bound and upper bound match

Worst-Case Time Complexity

- Only care about the hardest instances in a problem

Average-Case Time Complexity

- Care about the average-behavior of an algorithm

Discussion

- Is big O a good choice in the analysis of algorithm?
- Why do we usually analyze an algorithm by worst-case analysis?
- The time complexity of a problem depends on the model of computation.
- Random-Access Machine
- Turing Machine
- What is an algorithm?

References

目 R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1994.

目 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2003.

