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Connectives

Propositional Connectives |

@ Negation: — (not A)

A A
T F
F T
@ Conjunction: A (A and B)
A B ANB
T T T
F T F
T F F
F F F
@ Disjunction: V (A or B)

AV B

M= A
m T+ W
m— - -

N)



Connectives

Propositional Connectives Il

© Conditional: = (if A, then B)
A= B

m =T
T4 4™
e L e

Remark

The above definition for = is only appropriate for mathematics. Consider
the following cases.

o If this piece of iron is placed in water at time t, then the iron will dissolve.
(causal laws)

o If you were not born, there would be no 921 earthquake in Taiwan. (counter
factual)
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Propositional Connectives Il
@ Biconditional: < (A if and only if B)

A B As B
T T T
F T F
T F F
F F T



Connectives

Propositional Connectives IV

Definition (Statement form)

@ All statement letters (capital italic letters, e.g., A, B, C) and such
letters with numerical subscripts (e.g., A1, C5) are statement forms.

@ If A and B are statement forms, then so are (—.A), (AAB), (AV B),
(A= B), and (A < B).

© Only those expressions are statement forms that are determined to be
so by means of Conditions (1) and (2).

v

Examples
B, (=C2), (D3 A (=B)), (((=B1) V Bz) = A1 A Ca)




Truth Tables

Let A be a statement form. If we are given the truth values of all
statement letters of A, the truth value of A is determined and can be
calculated.

QO (nFA)VvB)=C(C)
Q@ (A= B)=((mA)AB))
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Truth Functions

Truth Functions (Boolean Functions)

Definition

A truth function of n arguments is a mapping {7, F'}"* — {T, F'}.

Observations

@ A statement form with n statement letters can be considered as a
truth function.

@ Conversely, any truth function of n arguments can be expressed in the
statement form.

v

Proposition
Let f: {T,F}" — {T,F}. Then there exists a statement form

A= A(Aq,...,A,) such that f(xq,...,x,) = A(A1, ..., A,) whenever
x1 = A1,...,xn = Ay. (This fact will be proved latter.)




Tautologies |

Definition
A statement form is called a tautology if and only if it is always true, no
matter what truth values of its statement letters may be.

Examples
Q (AV(-4))
Q (A (~(—4)))

o If (A= B) is a tautology, we say A implies BB, or B is a logical
consequence of A.

o If (A< B) is a tautology, we say A and B are logically equivalent.



Tautologies Il

Examples
e (A= AV B)
o (A& (~(-4)))

Example

Determine whether ((A < ((—B) v C)) = ((—A) = B)) is a tautology.
(positive)

39



Contradictions |

Definition
A statement form is called a contradiction iff it is always false.

Proposition

A is a tautology if and only if (—.A) is a contradiction.

Proposition
If A and (A = B) are tautologies, then so is .

Proposition

If A(Ai,...,Ay) is a tautology, then A(Ay — By,..., A1 — B,) is a
tautology. That is, substitution in a tautology yields a tautology.
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Contradictions I

Example

Let A(A1, A2) be ((A1 A Ag) = Aq). Set By as (BV C) and By as
(C AD,).

Proposition
Let B be .Al(.A — B) Then ((.A ~ B) = (.Al ~ Bl))

Example
Let A; be (C'V D), Abe C, and B be (=(=(C)).
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Parentheses |

Remove unnecessary parentheses by taking the following convention:
@ Omit the outer pair of parentheses of a statement form;

@ Connectives are ordered as follows: = > A >V >=>&; (the
precedence)

© A and V are left-to-right association; = is right-to-left association; <

is as an equivalence relation.

Example

As-BvCO= A
A& (-B)vC = A
A& (-B)v(O)= A
< (-B)vC)=A)
< (((=B)

A
(A< ((FB)v ()= A))
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The Removal of Parentheses

Parentheses |l

Example
e ANBAC as (ANB)NC).
e A=B=CasA= (B=0C).
e AeB&(Cas(Ae B)AN(B<(O).

Example
(A= B) = C is different from A = (B = C). (Set A, B, all false.)

Remark
A and V are associative and commutative.
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Adequate Set of Connectives |

A set of connectives is called adequate iff every truth function (of finite
arguments) has a corresponding statement form under this set of
connectives.

Proposition

Every truth function is generated by a statement form involving the
connectives —, A, and V.

Proof.

Let f be a truth function of n arguments. Let f|,,—7 be the function
f(T,xa,...,x,) that sets x1 = T in f. Similarly, f|.,—r be the restriction
setting 1 = F. Clearly f|;,=7 and f|;,=F are truth functions of n — 1
arguments. Then by induction, there are statement forms A; and A5 that
represent f|,,—7r and f|,,—F, respectively. It can be verify that

(A1 Axq) V (Ag A —xq) is a statement form that represents f. O

y
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Adequate Set of Connectives Il

Corollary

Every truth function corresponds to a statement form containing
connectives only A\ and =, or only VV and —, or only = and —.
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Adequate Set of Connectives Il

Definition
| (joint denial, NOR)
Al B

mTmH AW
— T mm

Ite

=

native denial, NAND)
A|B

i B B | et s B B s B | IO

m 44w
o e B B
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Adequate Set of Connectives IV

Proposition

The only binary connectives that along are adequate for the construction
of all truth functions are | and |. (Propositional constants I and F' are
not allowed in use.)
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Adequate Set of Connectives V

Proof.
Let o be a binary connective that is adequate. Observe the following
properties:
@ T oT must be F': Otherwise any statement form constructed by o
along will be true when all of its statement letters are true.
@ F o F must be T: Otherwise any statement form constructed by o
along will be false when all of its statement letters are false.
© FoT and T o F must be the same. Otherwise flipping all arguments
causes the change of the output value, which is not always true in all
truth functions.
Hence the only candidates are | (NOR) and | (NAND).
On the other hand, = A is equivalent to A | A and to A | 4;
(Al B) | (A] B)isequivalent to AV Band (A|B)|(A|B)is
equivalent to A A B. Since both {—,V} and {—, A} are adequate, it
follows that | or | is adequate.

O
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Formal Theories

A formal theory 7 has four parts (S, F, 2, R) where

@ &: a countable set of symbols
x € &%, the set of all finite strings over &, is called an expression.

@ §: the set of well-formed formulas
§ € 6* and whether x € § can be effectively verified.

© 2. the set of axioms; A C § and its membership problem can be
effectively verified.

@ ‘R: rules of inference
R ={Ry, Ry,...,R,} where each R; is a k; + 1-ary relation over §

written as
AlaA27"-aAk'

7

Aki+1

R; can be effectively verified when given Ay, ..., Ay, +1. The lower
term Ay, ;1 is called a direct consequence.
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Formal Theory

Definition (Proof)

A proof in 7 is a sequence

Ai, .o Ay

of wfs such that, for each i, either 4; € A or is a direct consequence of
the preceding wfs by using one of the rules of inference.

Definition (Theorem)

A theorem of 7 is a wf A of 7 such that there is a proof where the last
wf is A.
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Formal Theory

Definition (Decidability)
A theory 7 is called decidable if there is an algorithm for determining,

given any wf A, whether there is a proof of A.
Otherwise, if no such an algorithm does exist, it is called undecidable
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Formal Theory

Definition (Consequence)

A wf A is a consequence in 7 of a set I' of wfs iff there is a sequence

A, ..., A, of wfs

such that
QO A, = A,
@ for each i, either A; is an axiom, or A; € T, or A; is a direct
consequence of the preceding wfs.
It is written as T" - A.

Remarks

@ When T is a finite set {By, ..., By}, we write By, ..., By - A instead

of {By,...,By} - A.
@ F A means A is a theorem of T .




Formal Theory

Observations
Q@ IfTCAandT - A, then A - A.
@ I'+ A if and only if there is a finite subset A C A such that A - A.
Q IfAF A and foreach B € A we have '+ B, then T - A.
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Axiomatic Theory for the Propositional Calculus

The formal theory L = (&, 5,2, R) is as follows.
Q 6= {_'7:>?(a)}U{Ai’ (XS IN}
= and = are called primitive connectives; A; are called statement
letters.
@ The set of wfs § is defined recursively as

@ all statement letters are wfs;
@ if A and B are wfs, so are (-A) and (A4 = B).

O Let A, B, and C be any wfs of L. 2l contains

(Al) (A= (B=A)).
(A2) (A= (B=C)=(A=8B)=(A=1(0)).
(A3) (((=B) = (mA)) = ((-B) = A) = B)).

@ The only inference rule is modus ponens

A (A= B)

B (MP) .
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Remarks

(D1) (AAB) for =(A = —B)
(D2) (AV B) for (mA) = B
(D3) (A< B) for (A= B)A(B=A)

Lemma

Fr A= A for all wfs A.

Proof.
O A= (A=A =A)= (A= (A= A) = (A= A)) (Axiom
(A2))
Q@ A= (A= A) = A) (Axiom (Al))
Q@ (A= A= A) = (A= A) (from 1 and 2 by MP)
Q A= (A= A) (Axiom (Al))
© A= A (from 3 and 4 by MP)




Axiomatic Theory L

Proposition (Deduction Theorem)
IfT, A+ B, thenT v A= B. In particular, if A+ B, then - A= B.

Let Bi,..., B, be a proof of B from I' U {.A} where B,, = B. We will
show, by induction, ' F A = B; for 1 <i < n.
© (Basis) By must be either in I" or an axiom of L or A itself.
@ By €Tl or Byis an axiom: By, B = A= By, A= By is a proof.
@ By =A: A= Ais proved on Page 25.
@ (Induction) B; is either in I" or an axiom of L or A itself or by MP for
1<i1<n.
@ The first three cases are the same as for ¢ = 1.
@ B, is the direct consequence of B; and B, = B; = B; by MP where
j <iand m < i. By induction, we have I' - A = B; and
I'- A= (B; = B;). By Axiom (A2), we have
FA= (B,=8))= (A= B;) = (A= B;)). By twice
applications of MP, we get a proof of A = B,;.
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Axiomatic Theory L

Corollaries
o A=8BB=CHA=C
e A= (B=C(C),B-FA=C
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Lemmas |

For any wfs A amd B, the followings are theorems of L.

()

-—B =B

Proof.

o

(2]
(5]
(%]
(5]

(B = —=B) = ((-B = —-B) = B) (Axiom schema (A3))
—B = —B (the lemma on Page 25)

(=B = —~-B) = B (1,2, and the corollary on Page 27)
-=B = (=B = ——B) (Axiom (Al))

——B = B (3, 4, the corollary on Page 27)
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Lemmas |l
(b) B=—-—B
Proof.
@ (—B=-B)= ((-B= B)= —-8) (Axiom (A3))
@ ———B = -B (Part (a))
0 (—B= B)=--B(1, 2, MP)
0 B = (——-B = B) (Axiom (Al))
© B = —-B (3, 4, the corollary on Page 27)
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Axiomatic Theory L

Lemmas Il
(c) A= (A= B)

® A (Hyp)
@ A (Hyp)
0 A= (-B= A) (Axiom (Al))
0 A= (-B=-A) (Axiom (Al))
0 -B=A(2 3 MP)
@ B=-A(1 4, MP)
@ (-B=-A)= ((-B= A) = B) (Axiom (A3))
0 (-"B=A)=B(6 7 MP)
0 B (MP)
®© A AF B (1-9)
@ “AF A= B (10, Deduction Theorem)
@ F-A= (A= B) (11, Deduction Theorem)
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Lemmas IV
(d) (-B=-A)= (A= B)
Proof.
@ ~B=-A(Hyp)
@ (-B=-A)= ((-B= A) = B) (Axiom (A3))
@ A= (-B= A) (Axiom (Al))
0 (-B=A) =B (12 MP)
® A= B (3,4, the corollary on Page 27)
0 B=-AF A= B (1-5)
@ + (-B=-A)= (A= B) (6, Deduction Theorem)
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Lemmas V

()

0000000006

F(A=B)= (-B=-A)

A= B (Hyp)

-—A = A (Part(a))

-—=A = B (1, 2, the corollary on Page 27)

B = ——B (Part(b))

—-—A = =B (3, 4, the corollary on Page 27)

(== A = —=B) = (=B = -A) (Part(d))

(B = -A) (5 6, MP)

A= BF (-B=-A) (1-7)

F (A= B)= (-B= -A) (8, Deduction Theorem)
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Lemmas VI

f) FA= (-B= (A= B))
Proof.
@ AA=BFB(MP)
® F A= ((A= B)= B) (Deduction Theorem)
@ F((A=B)=B)= (-B= (A= DB)) (Part (e))
@ F A= (-B= —(A= B)) (the corollary on Page 27)
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Lemmas VII

(g) F(A=B)=((—~A= B)=B)

5000000000

A= B (Hyp)

—~A = B (Hyp)

(A= B)= (-B=-A) (Part(e))

-B = -A (1,3, MP)

(mA= B)= (=B = --A) (Part (e))

~B = ——A (2,5 MP)

(B = ——A) = ((-B = -A) = B) (Axiom (A3))
(-B = —A) =B (6,7, MP)

B (4, 8, MP)

F (A= B)= ((-A= B)= B) (Deduction Theorem)
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Soundness Theorem

Proposition (Soundness)

Every theorem of L is a tautology.

Proof.
@ All axioms of L are tautologies.

@ The modus ponens of two tautologies is again a tautology.
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Axiomatic Theory L

Lemma
Let A be a wf, and let By, ..., By be the statement letters in A. For any
assignment of truth values to By, ..., By, define
e B! = B, if B; takes the value T; otherwise B, = —B; if B; takes the
value F';
o A' = A if A takes the value T; otherwise A’ = - A if A takes the
value F'.
Then
B A )
Example

Let A be =(—Ay = As). We have

AQ,ﬂA5 H —\—\(—\AQ = A5) .
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We show this by induction on the structure of A.
(Basis) A is a statement letter B;. It reduces to show that B; - B and
=B F =By, which are proved on Page 25.
(Induction)
Q Ais -B:
@ A takes the value F' and B takes the value T'. By induction, we have
Bi,..., B}, F B. By the lemma on Page 29, we have + B = —-—8.
Thus, BY,..., B - -A.
@ A takes the value T and B takes the value F'. By induction, we have
Bi,...,B}, F —B, which is equal to Bf,..., B} F A.
Q@ AisB=C:

@ B takes F. We have Bi,..., B; I =B. By the lemma on Page 30
(F=B=B=27C), wehave Bf,...,B, - B=C,and B=Cis A"
@ C takes T. We have Bj,..., B}, F C. Then, by axiom (Al)
(C=B=C),B,....BFB=C and B=Cis A.
© B takes T and C takes F. We have Bj,..., B}, F B and
Bi,...,B}, F —C. Then by the lemma on Page 33
(B= (-C= —(B=10C))), we have BY,...,B; I =(B=C), and
-~(B=C)is A’
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Completeness Theorem

Proposition (Completeness Theorem)

If a wf A of L is a tautology, then it is a theorem of L. That is, A is a
tautology implies b, A.

Let By,..., B) be statement letters in A. Then
i,...,l3271,13k FA

B,,....By |, ~By+ A .

Hence
i,...7B;€71 l_BkiA ;

... Bl F-By=A .

Then by the lemma on Page 34, we have B{,...,B; _; - A. This process
can be continued, and finally we will get + A.
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