Fundamentals of Mathematics
 Lecture 4: Mathematical Statements

Guan-Shieng Huang

National Chi Nan University, Taiwan
Spring, 2008

Axiom, Postulate, Assumption I

Basic assumptions or principles for a system or theory.
Definition
Let T be a theory. We say Δ, a set of true facts in T, is an axiom system for T iff

$$
T \models \psi \text { if and only if } \Delta \models \psi
$$

for all propositions ψ about T.

- sound: $\Delta \models \psi \Longrightarrow T \models \psi$;
- consistent: no contradiction;
- complete: $T \models \psi \Longrightarrow \Delta \models \psi$.

And it should be independent. That is, there is no $\Delta^{\prime} \varsubsetneqq \Delta$ such that $\Delta^{\prime}=\Delta$.

Axiom, Postulate, Assumption II

Example
(1) Euclidean geometry
(2) natural numbers: (Peano's Axioms)
(c) $0 \in \mathbb{N}$.
(2) $\forall_{n \in \mathbb{N}} S(n) \in \mathbb{N}$.
(3) $\forall_{n \in \mathbb{N}} S(n) \neq 0$.
(1) $\left(\forall_{m, n \in \mathbb{N}}\right) S(m)=S(n) \Longrightarrow m=n$.

- Mathematical Induction
(3) vector space
(3) probability
(6) group theory

Algorithm, Procedure, Function

Every one should know their distinctions in programming language.

Theorem, Lemma, Proposition, Corollary

- proposition: a fact in a theory
- lemma: an important or useful fact that is used to prove a theorem in a theory
- theorem: a major result in a theory
- corollary: a direct consequence of a theorem or proposition

Example
(1) Fundamental Theorem of Calculus
(2) Fundamental Theorem of Arithmetic
(3) Fundamental Theorem of Algebra

Conjecture

An observation that is possibly true in a theory

- A list of conjectures

Definition I

Define the meaning of a term in a theory. It often reflects some concept in this theory. (Similar to "declaration" in programming language.)

- precise (+3)
- accurate $(+3)$
- clear (+2)
- concise (+1)
+3 : must; +2 : should; +1 : would; 0 : neutral;

Definition II

Why should we have to define the meaning of a term?

- To avoid ambiguity.
- To introduce important concept or idea in a theory.
- To define constructs in a theory.
- To shorten the description of a theory.
\Longrightarrow It is the foundation of a theory.
Hence one should
(1) follow the definitions strictly;
(2) never define a term that is never used.

Principle

Fundamental rule or law that governs a system.

Proof

- correct $(+3)$:
(1) sound: Each derivation must be sound.
(2) complete: The whole derivation actually asserts the claim.
- precise (+3)
- clear $(+2)$:
(1) Does the idea expose clearly?
(2) What are the techniques that you apply?
(3) Is the style appropriate?
- concise (+1)
- elegant $(+1)$
formal and informal proofs (homework exercises)

Example I

A good example can help the reader capture the essence of the discussion quickly.

- Keep it simple, as simple as possible, but not simpler.
- It has to be general enough so that it can reflect the point.

Example II

Example

Definition: A period of a sting x is an integer p, where $0<p \leq|x|$, such that

$$
x[i]=x[i+p] \text { for all } 1 \leq i \leq|x|-p .
$$

Bad examples:
(1) Let $x=a$ and $p=1$.
(2) Let $x=a a$ and $p=2$.
(3) Let $x=a a$ and $p=1$.
(9) Let $x=a b a b$ and $p=2$.

Good example: Let $x=$ ababa and $p=4$.

Exercise

D. E. Knuth rated the exercises in his books from 0 to 50.

- 0: immediate
- 10: simple (one minute)
- 20: medium (quarter hour)
- 30: moderately hard (more than two hours; even more time when the TV is on)
- 40: term project
- 50: research problem

In reality, an exercise could be
(1) something that is very important so that a student is supposed to have to know;
(2) something that is tedious so that the teacher doesn't want to teach.

Correctness

In order to make a proof or an algorithm correct, the following ingredients are the most important.

- soundness
- completeness

Some Common Usages

- Without loss of generality, ...
- ... if and only if ...
- necessary condition
- sufficient condition
- $P(n)$ is true for all but finite elements.

References I

固 K．H．Rosen（editor），Handbook of Discrete and Combinatorial Mathematics，CRC Press LLC， 2000.
圁 Wikipedia，http：／／wikipedia．org／．
回 R．C．T．Lee，How to Perform a Good Presentation of a Paper and How to Read Difficult Papers， 2007.

