

Fundamentals
of
Mathematics
Lecture 1:
Introduction

Guan-Shieng Huang

References

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

National Chi Nan University, Taiwan

February 18, 2008

Guan-Shieng Huang Fundamentals of Mathematics Lecture 1: Introduction

イロト イポト イヨト イヨト

Sac

-

Purpose of this Course

Fundamentals of Mathematics Lecture 1: Introduction	
Guan-Shieng Huang	To help students have the ability to read theoretical research
References	papers. The major difficulties come from
	 foundations
	 professional knowledge

• English

However, there are a lot of related courses in our department.

SQC

What Is Different in this Course?

Fundamentals
of
Mathematics
Lecture 1:
Introduction

Guan-Shieng Huang

References

- Mathematics is a language to describe mathematical truth.
 - Mathematical objects: sets, sequences, numbers, spaces, functions, graphs, etc
 - Language: syntax, semantics, or pragmatics
- Logic is the basis for reasoning.

SOR

The n + 1st Effect for Learning

Fundamentals of Mathematics Lecture 1: Introduction	
Guan-Shieng Huang	
References	When you learned it $n + 1$ st time, you got what you should know at the <i>n</i> th time.

< ロ ト < 団 ト < 三 ト < 三</p>

900

Э

Syllabus 課程大綱

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

References

- Introduction
- Reasoning techniques
- Mathematical notations
- Mathematical statements
- Induction
- Mathematical logic
- Set theory
- Asymptotic analysis
- Special issues

DQ P

Reasoning Techniques

Fundamentals of Mathematics Lecture 1: Introduction	
Guan-Shieng Huang	We discuss useful proof patterns in this lecture.
References	 Methodology: deduction, induction, reduction
	• Rules of inferences: modus ponens, modus tollens, case

- analysis, etc
- Direct proof versus indirect proof
- Proof by contradiction

< II.

SQC

Mathematical Notations

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

References

Notations in mathematics usually have common meanings.

- Greek letters: α , β , γ , δ , Σ , Π , ...
- Set theory
- Functions, relations, and sequences
- Number theory
- Analysis of algorithms
- Formal language
- Logic
- Probability
- Calculus

- 4 同下 - 4 戸下

nar

Mathematical Statements

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

References

A mathematical statement must be accurate and precise. The following ingredients can help us to structure them.

- Notation
- Definition, theorem, lemma, corollary, conjecture, axiom, proposition, postulate
- Proof
- Correctness
- Soundness and completeness

SOR

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

References

- Mathematical induction
- Structural induction: inductive definition
- Noetherian induction: well-founded ordering
- Induction and algorithm design

イロト イポト イヨト イヨト

1

SQR

Mathematical Logic

Fundamentals of Mathematics Lecture 1: Introduction

Guan-Shieng Huang

References

We focus on classical logics.

- Propositional logic: syntax, semantics, proof theory
- First-order logic: syntax, semantics, proof theory

- 同下 - 国下 - 国

DQ P

Fundamentals of Mathematics Lecture 1: Introduction	
Guan-Shieng Huang	We focus on infinite sets. The numbers of elements in infinite
References	sets can be compared. • Cardinality

- Power set
- Ordinalilty

<ロト < 部ト < 注ト < 注</p>

Э

Asymptotic Analysis

Fundamentals
of
Mathematics
Lecture 1:
Introduction

Guan-Shieng Huang

References

• Big-O, Ω , ω , o, Θ , \sim , \widetilde{O}

イロト イヨト イヨト

SQC

Э

The Difference from Discrete Mathematics

Fundamentals of Mathematics Lecture 1: Introduction							
Guan-Shieng Huang							
References				< - > < - > > < - > > > > > > > > > > >	< 문 > < 분	→ 191	ЭQ
	Guan-Shie	ng Huang	Fundamentals	of Mathematics	Lecture 1: In	troduction	

Fundamentals
of
Mathematics
Lecture 1:
Introduction

Guan-Shieng Huang

References

- Roughly 8 sets of homework
- Have a mid-term examination and a final examination if $\#(students) \ge 20$

- 4 同 ト - 4 同 ト

SQC

Fundamentals
of
Mathematics
Lecture 1:
Introduction

Guan-Shieng Huang

References

考試不作弊 作業禁止抄襲 不收遲交作業

<ロ> <同> <同> < 同> < 同>

 \equiv

Fundamentals of Mathematics Lecture 1. Introduction

Guan-Shieng Huang

References

- K. H. Rosen (editor), Handbook of Discrete and Combinatorial Mathematics, CRC Press LLC, 2000.
- U. Manber, Introduction to Algorithms, Addison-Wesley, 1989.
- R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd Edition, Addison-Wesley, 1994.

- D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997.
- E. Mendelson, Introduction to Mathematical Logic, 4th Edition, Chapman and Hall, 1997.

P. R. Halmos, Naïve Set Theory, Springer-Verlag, 2001.

イロト イポト イヨト イヨト 三日

Fundamentals of Mathematics Lecture 1: Introduction	
Guan-Shieng Huang References	B. Bollobas, The Art of Mathematics, Cambridge University Press, 2006.
	G. Gopalakrishnan, Computation Engineering: Applied Automata Theory and Logic, Springer-Verlag, 2006.
	■ 華羅庚,數學歸納法,凡異出版社,1994.

< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

€ 990