Concrete Mathematics Homework Set 2 October 11, 2010 http://staffweb.ncnu.edu.tw/shieng

Due date: October 25

Problem 1 Write out the following sums in full and explain why they are different.

$$\sum_{0 \le k \le 5} (2k+1), \ \sum_{0 \le k^2 \le 5} (2k^2+1).$$

Problem 2 Consider the following derivation

$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{a_k}\right) = \sum_{1 \le k \le n} \sum_{1 \le k \le n} \frac{a_k}{a_k} = \sum_{1 \le k \le n} \sum_{1 \le k \le n} 1 = \sum_{k=1}^{n} n = n^2.$$

What's wrong with it?

Problem 3 Show that $(x+y)^4 = x^0 y^4 + 4x^1 y^3 + 6x^2 y^2 + 4x^3 y^1 + x^4 y^0$.

Problem 4 Let $\Delta^1 f(x) = \Delta f(x) = f(x+1) - f(x)$ and $\Delta^m f(x) = \Delta(\Delta^{m-1}f(x))$ for integers $m \ge 2$. Show that $\Delta^n x^n = n!$ for all integers $n \ge 1$.

Problem 5 Prove the following *Quotient Rule:*

$$\Delta\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+1)}.$$

Problem 6 Prove that

$$\Delta \sin x = 2\sin(\frac{1}{2})\cos(x+\frac{1}{2})$$

and

$$\Delta \cos x = -2\sin(\frac{1}{2})\sin(x+\frac{1}{2})$$
.

Use the above results to show that

$$\sum_{k=1}^{n} \sin k = \frac{\sin(\frac{n+1}{2})\sin(\frac{n}{2})}{\sin(\frac{1}{2})}$$

.