Concrete Mathematics
 Homework Set 1
 Sep. 13, 2010
 http://staffweb.ncnu.edu.tw/shieng

Due date: Sep. 20
Problem 1 What's wrong with the following proof?
"Theorem. Let a be any positive number. For all positive integers n we have $a^{n-1}=1$. Proof. If $n=1, a^{n-1}=a^{1-1}=a^{0}=1$. And by induction, assuming that the theorem is true for $1,2, \ldots, n$, we have

$$
a^{(n+1)-1}=a^{n}=\frac{a^{n-1} \times a^{n-1}}{a^{(n-1)-1}}=\frac{1 \times 1}{1}=1 ;
$$

so the theorem is true for $n+1$ as well."
Problem 2 Suppose we have three pegs, labeled A, B, and C. Each time we can move only one disk to another peg, and we still follow the rule that a larger disk cannot appear above a smaller one. In addition, we can only move disks between Peg A and Peg B or between Peg B and Peg C, but not between Peg A and Peg C. At beginning there are n disks on Peg A and our goal is to move all disks to Peg C. What is the shortest number of moves to achieve this? Derive an argument to support your answer.

Problem 3 Suppose there are three pegs and n disks, and the rule is the same as Lucas's original rule. We say that a configuration of disks on pegs is valid if a larger disk does not appear above a smaller disk. Given two valid configurations, show that there exists a series of moves that can transform one to the other.

Problem 4 Derive a tight bound for the length of the transformation in Problem 3. That is, it is a function of n, the shortest sequence of moves between any two valid configurations is within this bound, and there do exist two configurations that can achieve this bound.

