Concrete Mathematics

Homework Set 3 Spring, 2008

http://staffweb.ncnu.edu.tw/shieng

Problem 1 Show that $(x+y)^4 = x^0y^4 + 4x^1y^3 + 6x^2y^2 + 4x^3y^1 + x^4y^0$.

Problem 2 Let $\Delta^1 f(x) = \Delta f(x) = f(x+1) - f(x)$ and $\Delta^m f(x) = \Delta(\Delta^{m-1} f(x))$ for integers $m \geq 2$. Show that $\Delta^n x^n = n!$ for all integers $n \geq 1$.

Problem 3 Prove the following *Quotient Rule:*

$$\Delta\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+1)}.$$

Problem 4 Prove that $\Delta \sin x = 2\sin(\frac{1}{2})\cos(x+\frac{1}{2})$. Also show that $\Delta \cos x = -2\sin(\frac{1}{2})\sin(x+\frac{1}{2})$.

Problem 5 Evaluate $\sum_{k=1}^{n} \sin k$ by finite calculus. Check whether your result equals to $\frac{\sin(\frac{n+1}{2})\sin(\frac{n}{2})}{\sin(\frac{1}{2})}$.