Concrete Mathematics

Midterm Exam
November 22, 2005
http://staffweb.ncnu.edu.tw/shieng
Problem 1 Evaluate $\sum_{k=1}^{n} k^{3}$ in closed form.
Problem 2 Show that $(x+y)^{4}=x^{0} y^{4}+4 x^{\underline{1}} y^{\underline{3}}+6 x^{2} y^{2}+4 x^{\underline{3}} y^{\underline{1}}+x^{4} y^{\underline{0}}$.
Problem 3 Prove the identity

$$
\left(\sum_{k=1}^{n} a_{k} x_{k}\right)\left(\sum_{k=1}^{n} b_{k} y_{k}\right)=\left(\sum_{k=1}^{n} a_{k} y_{k}\right)\left(\sum_{k=1}^{n} b_{k} x_{k}\right)+\sum_{1 \leq j<k \leq n}\left(a_{j} b_{k}-a_{k} b_{j}\right)\left(x_{j} y_{k}-x_{k} y_{j}\right) .
$$

Problem 4 Evaluate $\sum_{k=1}^{n} k^{\underline{2}} H_{k}$ in closed form.
Problem 5 Prove that $\Delta \cos x=-2 \sin \left(\frac{1}{2}\right) \sin \left(x+\frac{1}{2}\right)$. Use the above result to show that $\sum_{k=1}^{n} \sin k=\frac{\sin \left(\frac{n+1}{2}\right) \sin \left(\frac{n}{2}\right)}{\sin \left(\frac{1}{2}\right)}$ by finite calculus.

Problem 6 Prove or disprove: $\lfloor x\rfloor+\lfloor y\rfloor+\lfloor x+y\rfloor \leq\lfloor 2 x\rfloor+\lfloor 2 y\rfloor$.
Problem 7 Let $K_{0}=1$ and $K_{n+1}=1+\min \left(2 K_{\lfloor n / 2\rfloor}, 3 K_{\lfloor n / 3\rfloor}\right)$ for $n \geq 0$. Prove or disprove that $K_{n} \geq n$.

Problem 8 Let $\operatorname{Orb}(n, m)=\{n k \bmod m \mid 0 \leq k<m\}$ where m and n are positive integers. What is the cardinality (or size) of $\operatorname{Orb}(n, m)$? Prove your claim.

