Concrete Mathematics Homework Set 4 October 18, 2005 http://staffweb.ncnu.edu.tw/shieng

Due date: Oct. 25

Problem 1 Show that $(x+y)^{\underline{4}} = x^{\underline{0}}y^{\underline{4}} + 4x^{\underline{1}}y^{\underline{3}} + 6x^{\underline{2}}y^{\underline{2}} + 4x^{\underline{3}}y^{\underline{1}} + x^{\underline{4}}y^{\underline{0}}$. Also sow that $(x+y)^{\overline{4}} = x^{\overline{0}}y^{\overline{4}} + 4x^{\overline{1}}y^{\overline{3}} + 6x^{\overline{2}}y^{\overline{2}} + 4x^{\overline{3}}y^{\overline{1}} + x^{\overline{4}}y^{\overline{0}}$.

Problem 2 Let $\Delta^1 f(x) = \Delta f(x) = f(x+1) - f(x)$ and $\Delta^m f(x) = \Delta(\Delta^{m-1}f(x))$ for integers $m \ge 2$. Show that $\Delta^n x^n = n!$ for all integers $n \ge 1$.

Problem 3 Prove the following *Quotient Rule:*

$$\Delta\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+1)}$$

Problem 4 Prove that $\Delta \sin x = 2 \sin(\frac{1}{2}) \cos(x + \frac{1}{2})$. Also show that $\Delta \cos x = -2 \sin(\frac{1}{2}) \sin(x + \frac{1}{2})$.

Problem 5 Evaluate $\sum_{k=1}^{n} \sin k$ by finite calculus. Check whether your result equals to $\frac{\sin(\frac{n+1}{2})\sin(\frac{n}{2})}{\sin(\frac{1}{2})}$.